Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:
Phương pháp giải
Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\) có điểm biểu diễn là \(M\left( {x;y} \right)\).
Bước 2: Thay \(z = x + yi\) vào điều kiện đã cho dẫn đến phương trình liên hệ giữa \(x,y\).
Bước 3: Kết luận:
- Phương trình đường thẳng: \(Ax + By + C = 0\)
- Phương trình đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0\)
- Phương trình parabol: \(y = a{x^2} + bx + c\) hoặc \(x = a{y^2} + by + c\)
- Phương trình elip: \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\)
Lời giải của Tự Học 365
Đặt $z = x + yi{\rm{ }}\left( {x,y \in R} \right)$ thì ${\left| z \right|^2} = {z^2} \Leftrightarrow {x^2} + {y^2} = {x^2} + 2xyi - {y^2} \Leftrightarrow \left\{ \begin{array}{l}xy = 0\\{x^2} + {y^2} = {x^2} - {y^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in R\\y = 0\end{array} \right.$
Do đó tập điểm biểu diễn $z$ là đường thẳng $y = 0$.
Đáp án cần chọn là: b
Toán Lớp 12