[LỜI GIẢI] Tính giá trị của biểu thức A = 32 - 56 + 712 - 920 + 1130 - 1342 + 1556 - 1772 + 1990. - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tính giá trị của biểu thức A = 32 - 56 + 712 - 920 + 1130 - 1342 + 1556 - 1772 + 1990.

Tính giá trị của biểu thức A = 32 - 56 + 712 - 920 + 1130 - 1342 + 1556 - 1772 + 1990.

Câu hỏi

Nhận biết

Tính giá trị của biểu thức \(A = \frac{3}{2} - \frac{5}{6} + \frac{7}{{12}} - \frac{9}{{20}} + \frac{{11}}{{30}} - \frac{{13}}{{42}} + \frac{{15}}{{56}} - \frac{{17}}{{72}} + \frac{{19}}{{90}}.\)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có:

\(\begin{array}{l}A = \frac{3}{2} - \frac{5}{6} + \frac{7}{{12}} - \frac{9}{{20}} + \frac{{11}}{{30}} - \frac{{13}}{{42}} + \frac{{15}}{{56}} - \frac{{17}}{{72}} + \frac{{19}}{{90}}.\\ = \frac{3}{{1.2}} - \frac{5}{{2.3}} + \frac{7}{{3.4}} - \frac{9}{{4.5}} + \frac{{11}}{{5.6}} - \frac{{13}}{{6.7}} + \frac{{15}}{{7.8}} - \frac{{17}}{{8.9}} + \frac{{19}}{{9.10}}\\ = \frac{3}{1} - \frac{3}{2} - \frac{5}{2} + \frac{5}{3} + \frac{7}{3} - \frac{7}{4} - \frac{9}{4} + \frac{9}{5} + \frac{{11}}{5} - \frac{{11}}{6} - \frac{{13}}{6} + \\\,\,\,\,\,\, + \frac{{13}}{7} + \frac{{15}}{7} - \frac{{15}}{8} - \frac{{17}}{8} + \frac{{17}}{9} + \frac{{19}}{9} - \frac{{19}}{{10}}\\ = 3 + \left( {\frac{{ - 3}}{2} - \frac{5}{2}} \right) + \left( {\frac{5}{3} + \frac{7}{3}} \right) + \left( { - \frac{7}{4} - \frac{9}{4}} \right) + \left( {\frac{9}{5} + \frac{{11}}{5}} \right) + \\\,\,\,\,\,\,\, + \left( { - \frac{{11}}{6} - \frac{{13}}{6}} \right) + \left( {\frac{{13}}{7} + \frac{{15}}{7}} \right) + \left( { - \frac{{15}}{8} - \frac{{17}}{8}} \right) + \left( {\frac{{17}}{9} + \frac{{19}}{9}} \right) - \frac{{19}}{{10}}\\ = 3 - 4 + 4 - 4 + 4 - 4 + 4 - 4 + 4 - \frac{{19}}{{10}}\\ = 3 - \frac{{19}}{{10}}\\ = \frac{{11}}{{10}}\end{array}\)

Chọn D

Ý kiến của bạn