Tìm số tự nhiên \(n\) để phân số \(A = \frac{{8n + 193}}{{4n + 3}}\):
a) Có giá trị là số tự nhiên.
b) Là phân số tối giản.
c) Với giá trị nào của \(n\) trong khoảng từ \(150\) đến \(170\) thì phân số \(A\) rút gọn được.
Giải chi tiết:
a) \(A = \frac{{8n + 193}}{{4n + 3}} = \frac{{2.4n + 2.3 + 187}}{{4n + 3}}\)\( = \frac{{2.\left( {4n + 3} \right) + 187}}{{4n + 3}} = 2 + \frac{{187}}{{4n + 3}}\)
Để \(A \in \mathbb{N}\) thì \(\frac{{187}}{{4n + 3}} \in \mathbb{N} \Rightarrow 4n + 3 \in U\left( {187} \right) = \left\{ {1;\,\,11;\,\,\,17;\,\,187} \right\}\) .
Vì \(n \in \mathbb{N} \Rightarrow 4n + 3 \in \left\{ {11;\,\,17;\,\,187} \right\}.\) Ta có bảng sau:

Vậy với \(n \in \left\{ {2;\,\,46} \right\}\) thì phân số \(A = \frac{{8n + 193}}{{4n + 3}}\) nhận giá trị là số tự nhiên.
b) Gọi \(d\) là ước nguyên tố của \(8n + 193\) và \(4n + 3\).
Ta có: \(\left\{ \begin{array}{l}8n + 193\,\, \vdots \,\,d\\4n + 3\,\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}8n + 193\,\, \vdots \,\,d\\2.\left( {4n + 3\,} \right)\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}8n + 193\,\, \vdots \,\,d\\8n + 6\,\, \vdots \,\,d\end{array} \right.\)\( \Rightarrow \left( {8n + 193} \right) - \left( {8n + 6} \right)\,\, \vdots \,\,d\)
\( \Rightarrow 8n + 193 - 8n - 6\,\, \vdots \,\,d\)
\( \Rightarrow 187\,\, \vdots \,\,d\) mà \(d\) là số nguyên tố nên \(d \in \left\{ {11;\,\,17} \right\}.\)
+) Với \(d = 11 \Rightarrow 4n + 3\,\, \vdots \,\,11 \Rightarrow 4n + 3 - 11\,\, \vdots \,\,11\)\( \Rightarrow 4n - 8\,\, \vdots \,\,11 \Rightarrow 4.\left( {n - 2} \right)\,\, \vdots \,\,11\)
\( \Rightarrow n - 2\,\, \vdots \,\,11 \Rightarrow n = 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\)
+) Với \(d = 17 \Rightarrow 4n + 3\,\, \vdots \,\,17 \Rightarrow 4n + 3 + 17\,\, \vdots \,\,17\)\( \Rightarrow 4n + 20\,\, \vdots \,\,17 \Rightarrow 4.\left( {n + 5} \right)\,\, \vdots \,\,17\)
\( \Rightarrow n + 5\,\, \vdots \,\,17 \Rightarrow n + 5 = 17m \Rightarrow n = 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\)
\( \Rightarrow \) Phân số \(A = \frac{{8n + 193}}{{4n + 3}}\) rút gọn được khi \(n = 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\) và \(n = 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\)
Vậy \(n \ne 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\) và \(n \ne 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\) thì \(A = \frac{{8n + 193}}{{4n + 3}}\) là phân số tối giản.
c) Để phân số \(A = \frac{{8n + 193}}{{4n + 3}}\) rút gọn được thì \(n = 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\) và \(n = 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\).
Vì \(n\) trong khoảng từ \(150\) đến \(170\) nên:
+) \(150 < n < 170 \Rightarrow 150 < 11k + 2 < 170\)\( \Rightarrow 148 < 11k < 168\,\,\left( {k \in \mathbb{N}} \right)\)\( \Rightarrow k \in \left\{ {14;15} \right\} \Rightarrow n \in \left\{ {156;\,\,167} \right\}\)
+) \(150 < n < 170 \Rightarrow 150 < 17m - 5 < 170\)\( \Rightarrow 155 < 17m < 175\,\,\left( {m \in \mathbb{N}} \right)\)\( \Rightarrow m = 10 \Rightarrow n = 165\)
Vậy \(n \in \left\{ {156;\,165;\,167} \right\}\).
Tìm \(4\) số tự nhiên liên tiếp mà tổng bằng \(2010.\)
Viết kết quả của phép tính \({27^{16}}:{9^{10}}\) dưới dạng lũy thừa:
Viết liên tiếp các số từ \(1\) đến \(9999\) ta được số \(123…99999\). Tìm tổng các chữ số của số đó.
Tìm \(x\) biết:
\(\begin{array}{l}a)\;\left( {2x-130} \right):4 + 213 = {5^2} + 193\\b)\left( {{5^2} + {3^2}} \right)x + \left( {{5^2}-{3^2}} \right)x-50 = {10^2}\end{array}\)
Theo kế hoạch hai tổ sản xuất \(600\) sản phẩm. Do cải tiến kĩ thuật nên tổ \(I\) đã vượt mức \(18\% \) và tổ \(II\) vượt mức \(21\% \) . Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức \(120\) sản phẩm. Hỏi sản phẩm tổ \(I\) và tổ \(II\) được giao theo kế hoạch là bao nhiêu?
Tính bằng cách hợp lí (nếu có thể) :
\(\begin{array}{*{20}{l}}{A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28}\\{B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}}\end{array}\)
Cách tính đúng của phép tính \({4^4}:{4^3}\) là:
Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:
Tìm \(x\):
\(a)\,\,\,\,{\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200\)
\(b)\,\,\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{6^8}:{6^6} - {6^2}} \right)\)
Biết \({5^{x - 3}} = 25\) . Giá trị của \(x\) là: