[LỜI GIẢI] Tìm số tự nhiên n để phân số A = 8n + 1934n + 3: a) Có giá trị là số - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm số tự nhiên n để phân số A = 8n + 1934n + 3: a) Có giá trị là số

Tìm số tự nhiên n để phân số A = 8n + 1934n + 3:
a) Có giá trị là số

Câu hỏi

Nhận biết

Tìm số tự nhiên \(n\) để phân số \(A = \frac{{8n + 193}}{{4n + 3}}\):

a) Có giá trị là số tự nhiên.

b) Là phân số tối giản.

c) Với giá trị nào của \(n\) trong khoảng từ \(150\) đến \(170\) thì phân số \(A\) rút gọn được.


Đáp án đúng:

Lời giải của Tự Học 365

Giải chi tiết:

a) \(A = \frac{{8n + 193}}{{4n + 3}} = \frac{{2.4n + 2.3 + 187}}{{4n + 3}}\)\( = \frac{{2.\left( {4n + 3} \right) + 187}}{{4n + 3}} = 2 + \frac{{187}}{{4n + 3}}\)

Để \(A \in \mathbb{N}\) thì  \(\frac{{187}}{{4n + 3}} \in \mathbb{N} \Rightarrow 4n + 3 \in U\left( {187} \right) = \left\{ {1;\,\,11;\,\,\,17;\,\,187} \right\}\) .

Vì \(n \in \mathbb{N} \Rightarrow 4n + 3 \in \left\{ {11;\,\,17;\,\,187} \right\}.\)  Ta có bảng sau:

Vậy với \(n \in \left\{ {2;\,\,46} \right\}\) thì phân số \(A = \frac{{8n + 193}}{{4n + 3}}\) nhận giá trị là số tự nhiên.

b) Gọi \(d\) là ước nguyên tố của \(8n + 193\) và \(4n + 3\).

Ta có: \(\left\{ \begin{array}{l}8n + 193\,\, \vdots \,\,d\\4n + 3\,\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}8n + 193\,\, \vdots \,\,d\\2.\left( {4n + 3\,} \right)\, \vdots \,\,d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}8n + 193\,\, \vdots \,\,d\\8n + 6\,\, \vdots \,\,d\end{array} \right.\)\( \Rightarrow \left( {8n + 193} \right) - \left( {8n + 6} \right)\,\, \vdots \,\,d\)

\( \Rightarrow 8n + 193 - 8n - 6\,\, \vdots \,\,d\)

\( \Rightarrow 187\,\, \vdots \,\,d\) mà \(d\) là số nguyên tố nên \(d \in \left\{ {11;\,\,17} \right\}.\)

+) Với \(d = 11 \Rightarrow 4n + 3\,\, \vdots \,\,11 \Rightarrow 4n + 3 - 11\,\, \vdots \,\,11\)\( \Rightarrow 4n - 8\,\, \vdots \,\,11 \Rightarrow 4.\left( {n - 2} \right)\,\, \vdots \,\,11\)

\( \Rightarrow n - 2\,\, \vdots \,\,11 \Rightarrow n = 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\)

+) Với \(d = 17 \Rightarrow 4n + 3\,\, \vdots \,\,17 \Rightarrow 4n + 3 + 17\,\, \vdots \,\,17\)\( \Rightarrow 4n + 20\,\, \vdots \,\,17 \Rightarrow 4.\left( {n + 5} \right)\,\, \vdots \,\,17\)

\( \Rightarrow n + 5\,\, \vdots \,\,17 \Rightarrow n + 5 = 17m \Rightarrow n = 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\)

\( \Rightarrow \) Phân số \(A = \frac{{8n + 193}}{{4n + 3}}\) rút gọn được khi \(n = 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\) và \(n = 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\)

Vậy \(n \ne 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\) và \(n \ne 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\) thì \(A = \frac{{8n + 193}}{{4n + 3}}\) là phân số tối giản.

c) Để phân số \(A = \frac{{8n + 193}}{{4n + 3}}\) rút gọn được thì \(n = 11k + 2\,\,\left( {k \in \mathbb{N}} \right)\) và \(n = 17m - 5\,\,\left( {m \in {\mathbb{N}^*}} \right)\).

Vì \(n\) trong khoảng từ \(150\) đến \(170\) nên:

+) \(150 < n < 170 \Rightarrow 150 < 11k + 2 < 170\)\( \Rightarrow 148 < 11k < 168\,\,\left( {k \in \mathbb{N}} \right)\)\( \Rightarrow k \in \left\{ {14;15} \right\} \Rightarrow n \in \left\{ {156;\,\,167} \right\}\)

+) \(150 < n < 170 \Rightarrow 150 < 17m - 5 < 170\)\( \Rightarrow 155 < 17m < 175\,\,\left( {m \in \mathbb{N}} \right)\)\( \Rightarrow m = 10 \Rightarrow n = 165\)

Vậy \(n \in \left\{ {156;\,165;\,167} \right\}\).

Ý kiến của bạn