Tìm các số tự nhiên \(a\) và \(b\) biết: \(a.b = 360\) và \(BCNN(a,b) = 60\)
Giải chi tiết:
Ta có: BCNN \((a,b)\). ƯCLN \((a,b) = \,\,a.b\)
Thay \(a.b = 360\) và \(BCNN(a,b) = 60\) vào công thức trên ta có:
\(60.\) ƯCLN \((a,b) = \,\,360\)
\( \Rightarrow \) ƯCLN \((a,b) = \,\,360:60 = 6\)
Giả sử \(a = 6x,\,\,b = 6y\).
Do \(a.b = 360\) nên ta có: \(6x.6y = 360\), suy ra \(x.y = 10\)
Lại có: \(10 = 1.10 = 2.5\) nên ta có bảng sau:

Do đó:
\(\begin{array}{l} + )\,\,\,x = 1,\,\,y = 10 \Rightarrow a = 6.1 = 6\,;\,\,\,\,\,b = 6.10 = 60\\ + )\,\,\,x = 2,\,\,y = 5 \Rightarrow \,a = 6.2 = 12\,;\,\,\,\,\,b = 6.5 = 30\\ + )\,\,\,\,x = 5,\,\,y = 2 \Rightarrow a = 6.5 = 30\,;\,\,\,\,\,b = 6.2 = 12\\ + )\,\,\,\,x = 10,\,\,y = 1 \Rightarrow a = 6.10 = 60\,;\,\,\,\,\,b = 6.1 = 6\end{array}\)
Vậy có \(4\) cặp giá trị \(a,\,\,b\) thỏa mãn đề bài là \(a = 6\) và \(b = 60\) ; \(a = 12\) và \(b = 30\); \(a = 30\) và \(b = 12\); \(a = 60\) và \(b = 6\).
Tìm \(x\) biết:
\(\begin{array}{l}a)\;\left( {2x-130} \right):4 + 213 = {5^2} + 193\\b)\left( {{5^2} + {3^2}} \right)x + \left( {{5^2}-{3^2}} \right)x-50 = {10^2}\end{array}\)
Cách tính đúng của phép tính \({4^4}:{4^3}\) là:
Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:
Tìm \(4\) số tự nhiên liên tiếp mà tổng bằng \(2010.\)
Tìm \(x\):
\(a)\,\,\,\,{\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200\)
\(b)\,\,\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{6^8}:{6^6} - {6^2}} \right)\)
Viết liên tiếp các số từ \(1\) đến \(9999\) ta được số \(123…99999\). Tìm tổng các chữ số của số đó.
Biết \({5^{x - 3}} = 25\) . Giá trị của \(x\) là:
Theo kế hoạch hai tổ sản xuất \(600\) sản phẩm. Do cải tiến kĩ thuật nên tổ \(I\) đã vượt mức \(18\% \) và tổ \(II\) vượt mức \(21\% \) . Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức \(120\) sản phẩm. Hỏi sản phẩm tổ \(I\) và tổ \(II\) được giao theo kế hoạch là bao nhiêu?
Viết kết quả của phép tính \({27^{16}}:{9^{10}}\) dưới dạng lũy thừa:
Tính bằng cách hợp lí (nếu có thể) :
\(\begin{array}{*{20}{l}}{A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28}\\{B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}}\end{array}\)