Cho tập hợp \(A = {\rm{\{ }}2;3;5;7\} \). Cách viết nào sau đây là sai?
Giải chi tiết:
\(A = {\rm{\{ }}2;3;5;7\} \)
- Cách viết \(1 \notin A\) là đúng vì tập hợp \(A\) chỉ chứa các phần tử là \(2;3;5;7\).
- Cách viết \({\rm{\{ }}2;5\} \subset A\) là đúng vì tập hợp \({\rm{\{ }}2;5\} \) là tập hợp con của tập hợp \(A\).
- Cách viết \(7 \subset A\) là sai, cách viết đúng là \(7 \in A\).
- Cách viết \(7 \in A\) là đúng.
Vậy trong các cách viết đã cho, cách viết sai là \(7 \subset A\).
Chọn C.
Viết liên tiếp các số từ \(1\) đến \(9999\) ta được số \(123…99999\). Tìm tổng các chữ số của số đó.
Viết kết quả của phép tính \({27^{16}}:{9^{10}}\) dưới dạng lũy thừa:
Biết \({5^{x - 3}} = 25\) . Giá trị của \(x\) là:
Theo kế hoạch hai tổ sản xuất \(600\) sản phẩm. Do cải tiến kĩ thuật nên tổ \(I\) đã vượt mức \(18\% \) và tổ \(II\) vượt mức \(21\% \) . Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức \(120\) sản phẩm. Hỏi sản phẩm tổ \(I\) và tổ \(II\) được giao theo kế hoạch là bao nhiêu?
Cách tính đúng của phép tính \({4^4}:{4^3}\) là:
Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:
Tính bằng cách hợp lí (nếu có thể) :
\(\begin{array}{*{20}{l}}{A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28}\\{B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}}\end{array}\)
Tìm \(x\) biết:
\(\begin{array}{l}a)\;\left( {2x-130} \right):4 + 213 = {5^2} + 193\\b)\left( {{5^2} + {3^2}} \right)x + \left( {{5^2}-{3^2}} \right)x-50 = {10^2}\end{array}\)
Tìm \(4\) số tự nhiên liên tiếp mà tổng bằng \(2010.\)
Tìm \(x\):
\(a)\,\,\,\,{\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200\)
\(b)\,\,\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{6^8}:{6^6} - {6^2}} \right)\)