Cho \(p,\,\,q\) là hai số nguyên tố lẻ liên tiếp. Chứng minh rằng: \(\frac{{p + q}}{2}\) là hợp số.
Giải chi tiết:
Từ \(p,\,\,q\) là hai số nguyên tố lẻ liên tiếp nên \(\frac{{p + q}}{2}\) là số tự nhiên.
Do vai trò của \(p,\,\,q\) như nhau nên giả sử: \(p < q\)\( \Rightarrow 2p < p + q < 2q\)\( \Leftrightarrow p < \frac{{p + q}}{2} < q\)
Vậy \(\frac{{p + q}}{2}\) là số tự nhiên và nằm giữa 2 số nguyên tố lẻ liên tiếp.
\( \Rightarrow \frac{{p + q}}{2}\) là hợp số.
Cách tính đúng của phép tính \({4^4}:{4^3}\) là:
Tìm \(4\) số tự nhiên liên tiếp mà tổng bằng \(2010.\)
Viết liên tiếp các số từ \(1\) đến \(9999\) ta được số \(123…99999\). Tìm tổng các chữ số của số đó.
Tìm \(x\) biết:
\(\begin{array}{l}a)\;\left( {2x-130} \right):4 + 213 = {5^2} + 193\\b)\left( {{5^2} + {3^2}} \right)x + \left( {{5^2}-{3^2}} \right)x-50 = {10^2}\end{array}\)
Tính bằng cách hợp lí (nếu có thể) :
\(\begin{array}{*{20}{l}}{A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28}\\{B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}}\end{array}\)
Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:
Viết kết quả của phép tính \({27^{16}}:{9^{10}}\) dưới dạng lũy thừa:
Biết \({5^{x - 3}} = 25\) . Giá trị của \(x\) là:
Theo kế hoạch hai tổ sản xuất \(600\) sản phẩm. Do cải tiến kĩ thuật nên tổ \(I\) đã vượt mức \(18\% \) và tổ \(II\) vượt mức \(21\% \) . Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức \(120\) sản phẩm. Hỏi sản phẩm tổ \(I\) và tổ \(II\) được giao theo kế hoạch là bao nhiêu?
Tìm \(x\):
\(a)\,\,\,\,{\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200\)
\(b)\,\,\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{6^8}:{6^6} - {6^2}} \right)\)