Có hai đặc điểm quan trọng của bài toán về trường hợp mặt phẳng tiếp xúc với mặt cầu
· Điều kiện tiếp xúc $d\left( I;\left( P \right) \right)=R$.
· Tâm I sẽ nằm trên đường thẳng D đi qua điểm tiếp xúc và vuông góc với mặt phẳng $\left( P \right)$.
Bài tập 1: Lập phương trình mặt cầu $\left( S \right)$ tiếp xúc $\left( P \right):3x+y+z-4=0$ tại điểm $M\left( 1;-2;3 \right)$ và đi qua $A\left( -1;0;1 \right)$. |
Lời giải chi tiết
Do $\left( S \right)$ tiếp xúc với $\left( P \right)$ tại $M\left( 1;-2;3 \right)$ nên $IM\bot \left( P \right)\Rightarrow IM$ qua $M\left( 1;-2;3 \right)$ và có vectơ chỉ phương $\overrightarrow{u}=\overrightarrow{{{n}_{\left( P \right)}}}=\left( 3;1;1 \right)$ suy ra $IM:\left\{ \begin{array} {} x=1+3t \\ {} y=-2+t \\ {} z=3+t \\ \end{array} \right.$
Gọi $I\left( 1+3t;-2+t;3+t \right)$. Ta có $I{{M}^{2}}=I{{A}^{2}}\Leftrightarrow 11{{t}^{2}}={{\left( 3t+2 \right)}^{2}}+{{\left( t-2 \right)}^{2}}+{{\left( t+2 \right)}^{2}}$
$\Leftrightarrow 12t+12=0\Leftrightarrow t=-1$.
Suy ra $I\left( -2;-3;2 \right);R=IA=\sqrt{11}\Rightarrow \left( S \right):{{\left( x+2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=11$.
Bài tập 2: Lập phương trình mặt cầu $\left( S \right)$ tiếp xúc $\left( P \right):x+2y+3z+10=0$ tại điểm $M\left( 2;-3;-2 \right)$ và đi qua $A\left( 0;1;2 \right)$. |
Lời giải chi tiết
Do $\left( S \right)$ tiếp xúc với $\left( P \right)$ tại $M\left( 2;-3;-2 \right)$ nên $IM\bot \left( P \right)\Rightarrow IM$ qua $M\left( 2;-3;-2 \right)$ và có vectơ chỉ phương $\overrightarrow{u}=\overrightarrow{{{n}_{\left( P \right)}}}=\left( 1;2;3 \right)$ suy ra $IM:\left\{ \begin{array} {} x=2+t \\ {} y=-3+2t \\ {} z=-2+3t \\ \end{array} \right.$
Gọi $I\left( 2+t;-3+2t;-2+3t \right)$. Ta có $I{{M}^{2}}=I{{A}^{2}}\Leftrightarrow 14{{t}^{2}}={{\left( t+2 \right)}^{2}}+{{\left( 2t-4 \right)}^{2}}+{{\left( 3t-4 \right)}^{2}}$
$\Leftrightarrow 36-36t=0\Leftrightarrow t=1\Rightarrow I\left( 3;-1;1 \right);R=IA=\sqrt{14}$.
Phương trình mặt cầu $\left( S \right):{{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=14$.
Bài tập 3: Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu có tâm $I\left( -1;2;-1 \right)$ và tiếp xúc với mặt phẳng $\left( P \right):2x-y+2z-3=0$?
A. ${{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=3$. B. ${{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9$. C. ${{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=3$. D. ${{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=9$. |
Lời giải chi tiết
Bán kính mặt cầu tâm I là: $R=d\left( I;\left( P \right) \right)=\frac{\left| 2.\left( -1 \right)-2-2-3 \right|}{\sqrt{4+1+4}}=3$.
Do đó phương trình mặt cầu là: ${{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=9$. Chọn D.
Bài tập 4: Có bao nhiêu mặt phẳng song song với mặt phẳng $\left( \alpha \right):x+y+z=0$ đồng thời tiếp xúc với mặt cầu $\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-2y-2z=0$?
A. 1. B. 0. C. vô số. D. 2. |
Lời giải chi tiết
Mặt cầu có tâm $I\left( 1;1;1 \right);\text{ }R=\sqrt{3}$.
Mặt phẳng cầm tìm có dạng $\left( P \right):x+y+z+m=0\text{ }\left( \text{Do }\left( P \right)//\left( \alpha \right)\Rightarrow m\ne 0 \right)$.
Điều kiện tiếp xúc: $d\left( I;\left( P \right) \right)=R\Leftrightarrow \frac{\left| m+3 \right|}{\sqrt{3}}=\sqrt{3}\Leftrightarrow \left[ \begin{array} {} m=0\text{ }\left( loai \right) \\ {} m=-6 \\ \end{array} \right.$. Chọn A.
Bài tập 5: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d:\left\{ \begin{array} {} x=t \\ {} y=-1 \\ {} z=-t \\ \end{array} \right.$ và hai mặt phẳng $\left( P \right):x+2y+2z+3=0$ và $\left( Q \right):x+2y+2z+7=0$. Phương trình mặt cầu $\left( S \right)$ có $I\in d$ và tiếp xúc với cả hai mặt phẳng $\left( P \right)$ và $\left( Q \right)$ có phương trình là:
A. ${{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=\frac{9}{4}$. B. ${{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=\frac{4}{9}$. C. ${{\left( x+3 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=\frac{9}{4}$. D. ${{\left( x+3 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=\frac{4}{9}$. |
Lời giải chi tiết
Gọi $I\left( t;-1;-t \right)\in d$, do $\left( S \right)$ tiếp xúc với cả 2 mặt phẳng $\left( P \right)$ và $\left( Q \right)$ nên:
$d\left( I;\left( P \right) \right)=d\left( I;\left( Q \right) \right)=R\Leftrightarrow \frac{\left| 1-t \right|}{3}=\frac{\left| 5-t \right|}{3}\Leftrightarrow t=3\Rightarrow R=\frac{2}{3}$.
Phương trình mặt cầu cần tìm là: ${{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=\frac{4}{9}$. Chọn B.
Bài tập 6: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d:\frac{x-1}{3}=\frac{y+1}{1}=\frac{z}{1}$ và mặt phẳng $\left( P \right):2x+y-2z+2=0$. Phương trình mặt cầu $\left( S \right)$ có tâm thuộc đường thẳng d có bán kính nhỏ nhất, tiếp xúc với $\left( P \right)$ và đi qua điểm $A\left( 1;-1;1 \right)$ là:
A. ${{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{z}^{2}}=1$. B. ${{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{z}^{2}}=4$. C. ${{\left( x+1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=1$. D. ${{\left( x+1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=4$. |
Lời giải chi tiết
Do $I\in d$ ta gọi $I\left( 1+3t;-1+t;t \right)$ khi đó $IA=d\left( I;\left( P \right) \right)=R$
$\Leftrightarrow \sqrt{11{{t}^{2}}-2t+1}=\frac{\left| 5t+3 \right|}{3}=R\Leftrightarrow 9\left( 11{{t}^{2}}-2t+t \right)={{\left( 5t+3 \right)}^{2}}\Leftrightarrow \left[ \begin{array} {} t=0\Rightarrow R=1 \\ {} t=\frac{24}{37}\Rightarrow R=\frac{77}{37} \\ \end{array} \right.$
Do $\left( S \right)$ có bán kính nhỏ nhất nên ta chọn $t=0;R=1\Rightarrow I\left( 1;-1;1 \right)\Rightarrow \left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{z}^{2}}=1$.
Chọn A.
Bài tập 7: [Đề thi chuyên ĐH Vinh 2017] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu $\left( S \right)$ đi qua điểm $A\left( 2;-2;5 \right)$ và tiếp xúc với các mặt phẳng $\left( \alpha \right):x=1;\text{ }\left( \beta \right):y=-1;\text{ }\left( \gamma \right):z=1$. Bán kính của mặt cầu $\left( S \right)$ bằng:
A. $\sqrt{33}$. B. 1. C. $3\sqrt{2}$. D. 3. |
Lời giải chi tiết
Gọi $I\left( a;b;c \right)$ ta có: $d\left( I;\left( \alpha \right) \right)=d\left( I;\left( \beta \right) \right)=d\left( I;\left( \gamma \right) \right)$ suy ra $R=\left| a-1 \right|=\left| b+1 \right|=\left| c-1 \right|$.
Do điểm $A\left( 2;-2;5 \right)$ thuộc miền $x>1;\text{ }y<-1;\text{ }z>1$ nên $I\left( a;b;c \right)$ cũng thuộc miền $x>1;\text{ }y<-1;\text{ }z>1$.
Khi đó $I\left( R+1;-1-R;R+1 \right)$. Mặt khác $IA=R\Rightarrow \left( {{R}^{2}}-1 \right)+{{\left( R-1 \right)}^{2}}+{{\left( R-4 \right)}^{2}}={{R}^{2}}\Leftrightarrow R=3$. Chọn D.
TOÁN LỚP 12