Cho \(\left( H \right)\) là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình \(y=\frac{10}{3}x-{{x}^{2}}\), \(y=\left\{ \begin{align} & -x\,\,\,\,\,\,\,\text{khi}\,x\le 1 \\ & x-2\,\,\text{khi}\,\,x>1 \\ \end{align} \right.\). Diện tích của \(\left( H \right)\) bằng?

Phương pháp giải
Chia thành các miền diện tích và áp dụng công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số
Lời giải của Tự Học 365
Hoành độ giao điểm của hai đồ thị hàm số \(y=-x\) và \(y=x-2\) là: \(-x=x-2\,\Leftrightarrow x=1\).
Diện tích hình phẳng cần tính là:\(S=\int\limits_{0}^{1}{\left( \frac{10}{3}x-{{x}^{2}}+x \right)\text{d}x}+\int\limits_{1}^{3}{\left( \frac{10}{3}x-{{x}^{2}}-x+2 \right)\text{d}x}\).
\(\Leftrightarrow S=\int\limits_{0}^{1}{\left( \frac{13}{3}x-{{x}^{2}} \right)\text{d}x}+\int\limits_{1}^{3}{\left( \frac{7}{3}x-{{x}^{2}}+2 \right)\text{d}x}\)
\(\Leftrightarrow S=\int\limits_{0}^{1}{\left( \frac{13}{3}x-{{x}^{2}} \right)\text{d}x}+\int\limits_{1}^{3}{\left( \frac{7}{3}x-{{x}^{2}}+2 \right)\text{d}x}\)
\(\Leftrightarrow S=\left. \left( \frac{13}{6}{{x}^{2}}-\frac{{{x}^{3}}}{3} \right)\, \right|_{\,0}^{1}+\left. \left( \frac{7}{6}{{x}^{2}}-\frac{{{x}^{3}}}{3}+2x \right)\, \right|_{1}^{3}=\frac{13}{2}\)
Đáp án cần chọn là: b
Toán Lớp 12