Câu 37214 - Tự Học 365
Câu hỏi Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) nhận giá trị không âm và liên tục trên đoạn \(\left[ {0;1} \right].\) Đặt \(g\left( x \right) = 1 + 2\int\limits_0^x {f\left( t \right)dt} .\)  Biết \(g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3}\) với mọi \(x \in \left[ {0;1} \right]\). Tích phân \(\int\limits_0^1 {\sqrt[3]{{{{\left[ {g\left( x \right)} \right]}^2}}}dx} \) có giá trị lớn nhất bằng


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

+ Biến đổi giả thiết để có \(f\left( x \right) = \dfrac{{g'\left( x \right)}}{2}\)

+ Thay vào điều kiện còn lại rồi lấy tích phân hai vế, sử dụng phương pháp đưa vào trong vi phân để tính tích phân. Từ đó đánh giá để tìm giá trị lớn nhất của tích phân cần tìm.

Xem lời giải

Lời giải của Tự Học 365

Ta có \(g\left( x \right) = 1 + 2\int\limits_0^x {f\left( t \right)dt} \)  suy ra \(\left\{ \begin{array}{l}g\left( x \right) - 1 = 2\int\limits_0^x {f\left( t \right)dt} \\g\left( 0 \right) = 1 + \int\limits_0^0 {f\left( t \right)dt} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}g'\left( x \right) = 2f\left( x \right) \Rightarrow f\left( x \right) = \dfrac{{g'\left( x \right)}}{2}\\g\left( 0 \right) = 1\end{array} \right.\)

Mà \(g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3} \Leftrightarrow g\left( x \right) \ge {\left[ {\dfrac{{g'\left( x \right)}}{2}} \right]^3} \Leftrightarrow \sqrt[3]{{g\left( x \right)}} \ge \dfrac{{g'\left( x \right)}}{2} \Leftrightarrow \dfrac{{g'\left( x \right)}}{{\sqrt[3]{{g\left( x \right)}}}} \le 2\)

Với \(t \in \left[ {0;1} \right]\), Lấy tích phân hai vế ta được

\(\begin{array}{l}\int\limits_0^t {\dfrac{{g'\left( x \right)}}{{\sqrt[3]{{g\left( x \right)}}}}} dx \le \int\limits_0^t {2dx}  \Leftrightarrow \int\limits_0^t {{{\left[ {g\left( x \right)} \right]}^{\dfrac{{ - 1}}{3}}}} d\left( {g\left( x \right)} \right) \le 2t\\ \Leftrightarrow 2t \ge \dfrac{3}{2}\left. {{{\left[ {g\left( x \right)} \right]}^{\dfrac{2}{3}}}} \right|_0^t \Leftrightarrow \dfrac{4}{3}t \ge \sqrt[3]{{{g^2}\left( t \right)}} - \sqrt[3]{{{g^2}\left( 0 \right)}}\end{array}\)

mà \(g\left( 0 \right) = 1\) nên \(\sqrt[3]{{{g^2}\left( t \right)}} \le \dfrac{4}{3}t + 1 \Rightarrow \sqrt[3]{{{g^2}\left( x \right)}} \le \dfrac{4}{3}x + 1\)

Từ đó ta có \(\int\limits_0^1 {\sqrt[3]{{{g^2}\left( x \right)}}} \,dx \le \int\limits_0^1 {\left( {\dfrac{4}{3}x + 1} \right)dx}  \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}\left( x \right)}}} \,dx \le \left. {\left( {\dfrac{2}{3}{x^2} + x} \right)} \right|_0^1 \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}\left( x \right)}}} \,dx \le \dfrac{5}{3}\)

Hay giá trị lớn nhất cần tìm là \(\dfrac{5}{3}.\)

Đáp án cần chọn là: b

Toán Lớp 12