Câu 37208 - Tự Học 365
Câu hỏi Thông hiểu

Giả sử \(A,B\) là các hằng số của hàm số \(f\left( x \right) = A\sin \pi x + B{x^2}\). Biết \(\int\limits_0^2 {f\left( x \right)dx}  = 4\), giá trị của \(B\) là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng bảng nguyên hàm các hàm sơ cấp để tính tích phân hàm \(f\left( x \right)\) từ \(0\) đến \(2\).

Xem lời giải

Lời giải của Tự Học 365

Ta có: $\int\limits_0^2 {f\left( x \right)dx}  = 4 \Leftrightarrow \int\limits_0^2 {\left( {A\sin \pi x + B{x^2}} \right)dx}  = 4 $

$\Leftrightarrow \left. {\left( { - \dfrac{A}{\pi }\cos \pi x + \dfrac{B}{3}{x^3}} \right)} \right|_0^2 = 4 \Leftrightarrow \dfrac{B}{3}{.2^3} = 4 \Leftrightarrow B = \dfrac{3}{2}$

Đáp án cần chọn là: c

Toán Lớp 12