Cho hình hộp chữ nhật $ABCD.A’B’C’D’$ có đáy $ABCD$ là hình vuông cạnh \(a\sqrt 2 \), $AA’ = 2a$. Tính khoảng cách $d$ giữa hai đường thẳng $BD$ và $CD’$.
Phương pháp giải
Dựa vào phương pháp xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia đưa về tính khoảng cách từ một điểm đến một mặt phẳng
Lời giải của Tự Học 365
Gọi $I$ là điểm đối xứng của $A$ qua $D$,
suy ra $BCID$ là hình bình hành nên $BD//CI$
Do đó \(d\left( {BD;CD'} \right) = d\left( {BD;\left( {CD'I} \right)} \right) = d\left( {D;\left( {CD'I} \right)} \right).\)
Kẻ \(DE \bot CI\) tại \(E\), kẻ $DK \bot D'E\,\,\left( 1 \right)$ ta có:
\(\left\{ \begin{array}{l}CI \bot DE\\CI \bot DD'\end{array} \right. \Rightarrow CI \bot \left( {DD'E} \right) \Rightarrow CI \bot DK\,\,\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow DK \bot \left( {CD'I} \right) \)
\(\Rightarrow d\left( {D;\left( {CD'I} \right)} \right) = DK.\)
Xét tam giác $IAC$, ta có $DE // AC$ (do cùng vuông góc với $CI$) và có $D$ là trung điểm của $AI$ nên suy ra $DE$ là đường trung bình của tam giác $ACI$. Suy ra \(DE = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{{\sqrt 2 }} = a.\)
Tam giác vuông $D'DE$, có $DK = \dfrac{{D'D.DE}}{{\sqrt {D'{D^2} + D{E^2}} }} = \dfrac{{2a.a}}{{\sqrt {4{a^2} + {a^2}} }} = \dfrac{{2a\sqrt 5 }}{5}.$
Đáp án cần chọn là: c
Toán Lớp 12