Câu 37218 - Tự Học 365
Câu hỏi Vận dụng

Cho hình lăng trụ đứng $ABC.A’B’C’$ có đáy $ABC$ là tam giác vuông, $AB = BC = a,$ \(A'B = a\sqrt 3 \). Gọi $M$ là trung điểm của cạnh $BC.$ Tính khoảng cách giữa hai đường thẳng $AM$ và $B’C.$


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Dựa vào phương pháp xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia đưa về tính khoảng cách từ một điểm đến một mặt phẳng

Xem lời giải

Lời giải của Tự Học 365

Ta có $AA' = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 2 $.

Dựng $Cx||AM$ khi đó $d\left( {AM;B'C} \right) = d\left( {AM;\left( {B'Cx} \right)} \right)$.

$ = d\left( {M;\left( {B'Cx} \right)} \right) = \dfrac{1}{2}d\left( {B;\left( {B'Cx} \right)} \right)$ 

(vì \(BM \cap \left( {B'Cx} \right) = C\) và \(M\) là trung điểm của \(BC\))

Dựng $\left\{ \begin{array}{l}BE \bot Cx\\BF \bot B'E\,\,\left( 1 \right)\end{array} \right.$ ta có:

\(\left\{ \begin{array}{l}Cx \bot BE\\Cx \bot BB'\end{array} \right. \Rightarrow Cx \bot \left( {BB'E} \right) \Rightarrow Cx \bot BF\,\,\left( 2 \right)\)

Từ (1) và (2) $ \Rightarrow BF \bot \left( {B'Cx} \right) \Rightarrow d\left( {B;\left( {B'Cx} \right)} \right) = BF$

Gọi \(P = BE \cap AM\), do \(MP//CE,MB = MC\) nên \(PB = PE\)

Mà  $BP = \dfrac{{AB.BM}}{{\sqrt {A{B^2} + B{M^2}} }} = \dfrac{{a.\dfrac{a}{2}}}{{\sqrt {{a^2} + \dfrac{{{a^2}}}{4}} }} = \dfrac{a}{{\sqrt 5 }}$

Suy ra $BE = \dfrac{{2a}}{{\sqrt 5 }} \Rightarrow BF = \dfrac{{BE.BB'}}{{\sqrt {B{E^2} + BB{'^2}} }} = \dfrac{{2a}}{{\sqrt 7 }}$

Do đó $d = \dfrac{a}{{\sqrt 7 }}$.

Đáp án cần chọn là: d

Toán Lớp 12