Câu 37227 - Tự Học 365
Câu hỏi Nhận biết

 Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Số nghiệm của phương trình bằng số giao điểm của đường thẳng \(y = m\) với đồ thị hàm số \(y = f\left( x \right)\).

Xem lời giải

Lời giải của Tự Học 365

Quan sát đồ thị hàm số ta thấy:

+) Với \(m < 3\) thì đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại \(3\) điểm phân biệt.

+) Với \(m = 3\) thì đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại \(2\) điểm phân biệt.

+) Với \(m > 3\) thì đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại  duy nhất \(1\) điểm.

Vậy đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại nhiều nhất \(3\) điểm.

Do đó phương trình đã cho có nhiều nhất \(3\) nghiệm.

Đáp án cần chọn là: d

Toán Lớp 12