Câu 37216 - Tự Học 365
Câu hỏi Thông hiểu

Đáy của hình lăng trụ đứng tam giác \(ABC.A'B'C'\) là tam giác đều cạnh \(a = 4\) và biết diện tích tam giác \(A'BC\) bằng $8$ . Tính thể tích khối lăng trụ?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

- Tính độ dài đường cao \(AA'\) và diện tích đáy \({S_{\Delta ABC}}\).

- Tính thể tích khối lăng trụ theo công thức \(V = Sh\).

Xem lời giải

Lời giải của Tự Học 365

Gọi D là trung điểm của BC ta có:

Tam giác ABC đều nên \(AD \bot BC\) và $AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot BC$

\( \Rightarrow BC \bot \left( {AA'D} \right) \Rightarrow BC \bot A'D \Rightarrow \Delta A'BC\)cân tại A’

 Tam giác ABC đều cạnh \(a = 4 \Rightarrow AD = \dfrac{{4\sqrt 3 }}{2} = 2\sqrt 3 \)

\({S_{\Delta A'BC}} = \dfrac{1}{2}A'D.BC \Rightarrow A'D = \dfrac{{2{S_{\Delta A'BC}}}}{{BC}} = \dfrac{{2.8}}{4} = 4\)

Xét tam giác vuông  AA’D có: \(AA' = \sqrt {A'{D^2} - A{D^2}}  = \sqrt {16 - 12}  = 2\)

\({S_{ABC}} = \dfrac{{{4^2}\sqrt 3 }}{4} = 4\sqrt 3 \)

Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = 2.4\sqrt 3  = 8\sqrt 3 \)

Đáp án cần chọn là: b

Toán Lớp 12