Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:
Phương pháp giải
Sử dụng các công thức \(k\overrightarrow a \pm l\overrightarrow b = \left( {k{a_1} \pm l{b_1};k{a_2} \pm l{b_2};k{a_3} \pm l{b_3}} \right)\)
Lời giải của Tự Học 365
$\vec n = 3\left( {2;3; - 5} \right) + 2\left( {0; - 3;4} \right) - \left( {1; - 2;3} \right) = \left( {5;5; - 10} \right)$
Đáp án cần chọn là: c
Toán Lớp 12