Câu 37209 - Tự Học 365
Câu hỏi Thông hiểu

Diện tích tam giác \(OBC\) biết \(B\left( {1;0;2} \right),C\left( { - 2;0;0} \right)\) là:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Sử dụng công thức tính diện tích tam giác \({S_{ABC}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\)

Xem lời giải

Lời giải của Tự Học 365

Ta có: \(\overrightarrow {OB}  = \left( {1;0;2} \right),\overrightarrow {OC}  = \left( { - 2;0;0} \right)\)

\( \Rightarrow \left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l}1\\ - 2\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 2\end{array}&\begin{array}{l}0\\0\end{array}\end{array}} \right|} \right) = \left( {0; - 4;0} \right)\)

Do đó \({S_{OBC}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right]} \right| = \dfrac{1}{2}\sqrt {0 + {{\left( { - 4} \right)}^2} + {0^2}}  = 2\)

Đáp án cần chọn là: d

Toán Lớp 12