Câu 37203 - Tự Học 365
Câu hỏi Nhận biết

Cho ba điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right),C\left( {{x_C};{y_C};{z_C}} \right)\) lần lượt thuộc các trục tọa độ \(Ox,Oy,Oz\). Tọa độ trọng tâm tam giác là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Công thức tọa độ trọng tâm tam giác \(G\left( {\dfrac{{{x_A} + {x_B} + {x_C}}}{3};\dfrac{{{y_A} + {y_B} + {y_C}}}{3};\dfrac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\)

Xem lời giải

Lời giải của Tự Học 365

Do \(A \in Ox,B \in Oy,C \in Oz\) nên \(A\left( {{x_A};0;0} \right),B\left( {0;{y_B};0} \right),C\left( {0;0;{z_C}} \right)\)

Khi đó tọa độ trọng tâm tam giác là \(G\left( {\dfrac{{{x_A}}}{3};\dfrac{{{y_B}}}{3};\dfrac{{{z_C}}}{3}} \right)\)

Đáp án cần chọn là: c

Toán Lớp 12