Câu 37206 - Tự Học 365
Câu hỏi Thông hiểu

Tính giá trị biểu thức \(S = {\sin ^2}15^\circ  + {\cos ^2}20^\circ  + {\sin ^2}75^\circ  + {\cos ^2}110^\circ \)


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng tính chất cảu hai góc phụ nhau và hai góc hơn kém nhau \({90^0}\)

Xem lời giải

Lời giải của Tự Học 365

Hai góc \(15^\circ \) và \(75^\circ \) phụ nhau nên \(\sin 75^\circ  = \cos 15^\circ .\)

Hai góc \(20^\circ \) và \(110^\circ \) hơn kém nhau \(90^\circ \) nên \(\cos 110^\circ  =  - \sin 20^\circ .\)

Do đó, \(S = {\sin ^2}15^\circ  + {\cos ^2}20^\circ  + {\sin ^2}75^\circ  + {\cos ^2}110^\circ \)

\( = {\sin ^2}15^\circ  + {\cos ^2}20 + {\cos ^2}15^\circ  + {\left( { - \sin 20^\circ } \right)^2}\)\( = \left( {{{\sin }^2}15^\circ  + {{\cos }^2}15^\circ } \right) + \left( {{{\sin }^2}20^\circ  + {{\cos }^2}20^\circ } \right) = 2\)

Đáp án cần chọn là: c

Toán Lớp 12