Câu 37230 - Tự Học 365
Câu hỏi Thông hiểu

Xếp ngẫu nhiên $3$ nam và $5$ nữ ngồi vào $8$ ghế xếp thành hàng ngang. Xác suất để $3$ nam ngồi cạnh nhau.


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Tính số phần tử của không gian mẫu \(\left| \Omega \right|\) Tính số kết quả có lợi cho biến cố \(\left| A \right|\) Sử dụng công thức tính xác suất \(P(A) = \dfrac{{\left| A \right|}}{{\left| \Omega \right|}}\) 

Xem lời giải

Lời giải của Tự Học 365

Không gian mẫu \(\Omega \) là tập các hoán vị của $8$ phần tử, ta có: \(\left| \Omega  \right| = 8! = 40320\)

Gọi $A$ là biến cố $3$ nam ngồi cạnh nhau.

Coi \(3\) nam là một người và thêm \(5\) nữ là \(6\) người nên sẽ có \(6!\) cách, hoán đổi vị trí của \(3\) nam ta có \(3!\) cách nên \(\left| A \right| = 3!.6! = 4320\)

Vậy \(P(A) = \dfrac{{\left| A \right|}}{{\left| \Omega  \right|}} = \dfrac{{4320}}{{40320}} = \dfrac{3}{{28}}\)

Đáp án cần chọn là: a

Toán Lớp 12