Có $8$ quả cân lần lượt là $1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg$. Chọn ngẫu nhiên $3$ quả cân trong $8$ quả cân đó. Tính xác suất để trọng lượng $3$ quả cân được chọn không vượt quá $9kg$.
Phương pháp giải
Tính số phần tử của không gian mẫu \(\left| \Omega \right|\) Tính số kết quả có lợi cho biến cố \(\left| A \right|\) Sử dụng công thức tính xác suất \(P(A) = \dfrac{{\left| A \right|}}{{\left| \Omega \right|}}\)
Lời giải của Tự Học 365
Chọn ngẫu nhiên $3$ quả cân trong $8$ quả cân ta có \(\left| \Omega \right| = C_8^3 = 56\)
Gọi $A$ là biến cố chọn được $3$ quả cân và tổng trọng lượng $3$ quả cân không vượt quá $9 kg$.
Vì
\(\begin{array}{l}1 + 2 + 3 = 6 < 9\\1 + 2 + 4 = 7 < 9\\1 + 2 + 5 = 8 < 9\\1 + 2 + 6 = 9\\1 + 3 + 4 = 8 < 9\\1 + 3 + 5 = 9\\2 + 3 + 4 = 9\end{array}\)
Nên \(\left| A \right| = 7\)
Vậy \(P(A) = \dfrac{{\left| A \right|}}{{\left| \Omega \right|}} = \dfrac{7}{{56}} = \dfrac{1}{8}\)
Đáp án cần chọn là: d
Toán Lớp 12