Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có phương trình: \({x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\) và đường thẳng \(\Delta :\,\,\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = z\) . Mặt phẳng $(P)$ vuông góc với \(\Delta \) và tiếp xúc với $(S)$ có phương trình là
Phương pháp giải
Mặt phẳng tiếp xúc với mặt cầu thì khoảng cách từ tâm mặt cầu đến mặt phẳng bằng bán kính mặt cầu
Lời giải của Tự Học 365
Tâm mặt cầu $I(1;-2;1)$, bán kính $R=3$.
Mặt phẳng $(P)$ vuông góc với $\Delta $ có phương trình dạng $2{\rm{x - }}2y + z + D = 0$
Vì $(P)$ tiếp xúc với mặt cầu nên ${\rm{d}}\left( {I,\left( P \right)} \right) = R \Rightarrow \left| {D - 7} \right| = 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{D = 2}\\{D = - 16}\end{array}} \right.$
Phương trình $(P)$ là $2x-2y+z+2=0; 2x-2y+z-16=0$.
Đáp án cần chọn là: b
Toán Lớp 12