Câu 37206 - Tự Học 365
Câu hỏi Vận dụng

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có phương trình: \({x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\) và đường thẳng \(\Delta :\,\,\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = z\) . Mặt phẳng $(P)$ vuông góc với \(\Delta \) và tiếp xúc với $(S)$ có phương trình là 


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Mặt phẳng tiếp xúc với mặt cầu thì khoảng cách từ tâm mặt cầu đến mặt phẳng bằng bán kính mặt cầu

Xem lời giải

Lời giải của Tự Học 365

Tâm mặt cầu $I(1;-2;1)$, bán kính $R=3$.

Mặt phẳng $(P)$ vuông góc với $\Delta $ có phương trình dạng $2{\rm{x - }}2y + z + D = 0$

Vì $(P)$ tiếp xúc với mặt cầu nên ${\rm{d}}\left( {I,\left( P \right)} \right) = R \Rightarrow \left| {D - 7} \right| = 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{D = 2}\\{D =  - 16}\end{array}} \right.$

Phương trình $(P)$ là $2x-2y+z+2=0;  2x-2y+z-16=0$.

Đáp án cần chọn là: b

Toán Lớp 12