Câu 37208 - Tự Học 365
Câu hỏi Vận dụng cao

Trong không gian với hệ tọa độ $Oxyz$, cho ba vectơ $\vec a = \left( {1;m;2} \right),\vec b = \left( {m + 1;2;1} \right)$ và \(\vec c = \left( {0;m - 2;2} \right)\). Giá trị \(m\) bằng bao nhiêu để ba vectơ \(\vec a,\vec b,\vec c\) đồng phẳng


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Điều kiện để ba véc tơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) đồng phẳng là \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{u_3}}  = 0\)

Xem lời giải

Lời giải của Tự Học 365

Ta có

\(\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}m&2\\2&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\1&{m + 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&m\\{m + 1}&2\end{array}} \right|} \right) = \left( {m - 4;2m + 1;2 - {m^2} - m} \right)\)

\(\left[ {\vec a,\vec b} \right].\vec c = (2m + 1)(m - 2) + 2(2 - {m^2} - m)\)

\(\vec a,\vec b,\vec c\) đồng phẳng khi

\(\begin{array}{l}\left[ {\vec a,\vec b} \right].\vec c = 0 \Leftrightarrow (2m + 1)(m - 2) + 2(2 - {m^2} - m) = 0\\ \Leftrightarrow 2{m^2} - 4m + m - 2 + 4 - 2{m^2} - 2m = 0\\ \Leftrightarrow  - 5m + 2 = 0\\ \Leftrightarrow m = \dfrac{2}{5}\end{array}\)

Đáp án cần chọn là: b

Toán Lớp 12