Câu 37206 - Tự Học 365
Câu hỏi Thông hiểu

Trong không gian $Oxyz$ cho ba vecto \(\vec a = \left( { - 1;1;0} \right),\vec b = \left( {1;1;0} \right),\vec c = \left( {1;1;1} \right)\). Mệnh đề nào dưới đây sai?


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Sử dụng công thức độ dài véc tơ \(\left| {\overrightarrow {{u_1}} } \right| = \sqrt {{{\overrightarrow {{u_1}} }^2}}  = \sqrt {x_1^2 + y_1^2 + z_1^2} \)

- Sử dụng điều kiện để hai véc tơ vuông góc \(\overrightarrow {{u_1}}  \bot \overrightarrow {{u_2}}  \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}}  = 0 \Leftrightarrow {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2} = 0\)

Xem lời giải

Lời giải của Tự Học 365

Kiểm tra lần lượt các điều kiện

\(\left\{ \begin{array}{l}\left| {\vec a} \right| = \sqrt {{{( - 1)}^2} + {1^2} + {0^2}}  = \sqrt 2 \\\left| {\vec c} \right| = \sqrt {{1^2} + {1^2} + {1^2}}  = \sqrt 3 \\\vec a.\vec b = ( - 1).1 + 1.1 + 0.0 = 0 \Rightarrow \vec a \bot \vec b\end{array} \right.\)

Lại có: \(\overrightarrow b .\overrightarrow c  = 1.1 + 1.1 + 0.1 = 2 e 0\) nên \(\overrightarrow b \) và \(\overrightarrow c \) không vuông góc.

Đáp án cần chọn là: d

Toán Lớp 12