Câu 37205 - Tự Học 365
Câu hỏi Nhận biết

Cho số phức \(z\) có \(|z| = 2\) thì số phức \(w = z + 3i\) có mô đun nhỏ nhất và lớn nhất lần lượt là


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Áp dụng bất đẳng thức chứa dấu giá trị tuyệt đối: \(\left| A \right| - \left| B \right| \le \left| {A \pm B} \right| \le \left| A \right| + \left| B \right|\).

Đặc biệt $\left| {\left| A \right| - \left| B \right|} \right| \leqslant \left| {A \pm B} \right| \leqslant \left| A \right| + \left| B \right|$

Xem lời giải

Lời giải của Tự Học 365

Sử dụng bất đẳng thức chứa dấu giá trị tuyệt đối ta có

\(\left| {|z| - |3i|} \right| \le |z + 3i| \le \left| {|z| + |3i|} \right| \Leftrightarrow |2 - 3| \le |w| \le |2 + 3| \Leftrightarrow 1 \le |w| \le 5\)

Nhận thấy với \(z =  - 2i\) thì \(\left| w \right| = 1\) và với \(z = 2i\) thì \(\left| w \right| = 5\) nên \(1\) và \(5\) là GTNN và GTLN của \(\left| w \right|\).

Đáp án cần chọn là: d

Toán Lớp 12