Câu 37217 - Tự Học 365
Câu hỏi Thông hiểu

Cho số phức $z$ thỏa mãn $\dfrac{{1 - i}}{{z + 1}} = 1 + i$. Điểm \(M\) biểu diễn của số phức $w = {z^3} + 1$ trên mặt phẳng tọa độ có tọa độ là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Tính \(z\) suy ra \(w\) và điểm biểu diễn của \(w\).

Xem lời giải

Lời giải của Tự Học 365

Ta có $\dfrac{{1 - i}}{{z + 1}} = 1 + i \Leftrightarrow z + 1 = \dfrac{{1 - i}}{{1 + i}}$ $ \Leftrightarrow z + 1 =  - i \Rightarrow z =  - 1 - i$

Suy ra $w = {z^3} + 1 = {\left( { - 1 - i} \right)^3} + 1 =  - {\left( {1 + i} \right)^3} + 1 = 3 - 2i$

$ \Rightarrow M\left( {3; - 2} \right)$

Đáp án cần chọn là: c

Toán Lớp 12