Câu 37213 - Tự Học 365
Câu hỏi Thông hiểu

Trong không gian với hệ trục $Oxyz$, mặt phẳng đi qua điểm \(A\left( {1;3; - 2} \right)\) và song song với mặt phẳng \(\left( P \right):2x - y + 3z + 4 = 0\) là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Hai mặt phẳng song song thì chúng có cùng VTPT.

- Mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n  = \left( {a;b;c} \right)\) làm VTPT có phương trình \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\)

Xem lời giải

Lời giải của Tự Học 365

Mặt phẳng \(\left( Q \right)\)  song song với mặt phẳng \(\left( P \right):2x - y + 3z + 4 = 0\) có dạng:

\(\left( Q \right):2x - y + 3z + D = 0,{\rm{ }}\left( {D e 4} \right)\)

Mặt phẳng \(\left( Q \right)\)  đi qua điểm \(A\left( {1;3; - 2} \right)\) ta có: \(2.1 - 3 + 3.\left( { - 2} \right) + D = 0 \Leftrightarrow D = 7 e 4\)(thỏa mãn)

Vậy phương trình mặt phẳng \(\left( Q \right):2x - y + 3z + 7 = 0\).

Đáp án cần chọn là: a

Toán Lớp 12