Tìm hai chữ số tận cùng của \({7^{1991}}\)
Giải chi tiết:
Ta có: \({7^{1991}} = {7^{1988}}{.7^3} = {\left( {{7^4}} \right)^{497}}.343 = {\left( {...01} \right)^{497}}.343 = \left( {...01} \right).343 = ...43\)
Vậy \({7^{1991}}\) có hai chữ số tận cùng là 43.
Viết kết quả của phép tính \({27^{16}}:{9^{10}}\) dưới dạng lũy thừa:
Tìm \(x\) biết:
\(\begin{array}{l}a)\;\left( {2x-130} \right):4 + 213 = {5^2} + 193\\b)\left( {{5^2} + {3^2}} \right)x + \left( {{5^2}-{3^2}} \right)x-50 = {10^2}\end{array}\)
Viết liên tiếp các số từ \(1\) đến \(9999\) ta được số \(123…99999\). Tìm tổng các chữ số của số đó.
Tìm \(x\):
\(a)\,\,\,\,{\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200\)
\(b)\,\,\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{6^8}:{6^6} - {6^2}} \right)\)
Cách tính đúng của phép tính \({4^4}:{4^3}\) là:
Theo kế hoạch hai tổ sản xuất \(600\) sản phẩm. Do cải tiến kĩ thuật nên tổ \(I\) đã vượt mức \(18\% \) và tổ \(II\) vượt mức \(21\% \) . Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức \(120\) sản phẩm. Hỏi sản phẩm tổ \(I\) và tổ \(II\) được giao theo kế hoạch là bao nhiêu?
Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:
Tính bằng cách hợp lí (nếu có thể) :
\(\begin{array}{*{20}{l}}{A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28}\\{B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}}\end{array}\)
Biết \({5^{x - 3}} = 25\) . Giá trị của \(x\) là:
Tìm \(4\) số tự nhiên liên tiếp mà tổng bằng \(2010.\)