Số \(7,5 \) được viết dưới dạng phân số thập phân là:
Giải chi tiết:
Ta có: \(7,5 = \frac{{75}}{{10}}\)
Vậy số \(7,5\) được viết dưới dạng phân số thập phân là: \(\frac{{75}}{{10}}\)
Chọn B.
Tìm \(x\):
\(a)\,\,\,\,{\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200\)
\(b)\,\,\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{6^8}:{6^6} - {6^2}} \right)\)
Tính bằng cách hợp lí (nếu có thể) :
\(\begin{array}{*{20}{l}}{A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28}\\{B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}}\end{array}\)
Viết liên tiếp các số từ \(1\) đến \(9999\) ta được số \(123…99999\). Tìm tổng các chữ số của số đó.
Tìm \(x\) biết:
\(\begin{array}{l}a)\;\left( {2x-130} \right):4 + 213 = {5^2} + 193\\b)\left( {{5^2} + {3^2}} \right)x + \left( {{5^2}-{3^2}} \right)x-50 = {10^2}\end{array}\)
Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:
Theo kế hoạch hai tổ sản xuất \(600\) sản phẩm. Do cải tiến kĩ thuật nên tổ \(I\) đã vượt mức \(18\% \) và tổ \(II\) vượt mức \(21\% \) . Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức \(120\) sản phẩm. Hỏi sản phẩm tổ \(I\) và tổ \(II\) được giao theo kế hoạch là bao nhiêu?
Biết \({5^{x - 3}} = 25\) . Giá trị của \(x\) là:
Tìm \(4\) số tự nhiên liên tiếp mà tổng bằng \(2010.\)
Cách tính đúng của phép tính \({4^4}:{4^3}\) là:
Viết kết quả của phép tính \({27^{16}}:{9^{10}}\) dưới dạng lũy thừa: