Câu 37208 - Tự Học 365
Câu hỏi Vận dụng cao

Cho đoạn mạch AB gồm điện trở thuần R, cuộn cảm thuần có độ tự cảm L và tụ điện có điện dung C mắc nối tiếp; trong đó R và C không đổi, còn L thay đổi được. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều \(u = U\sqrt 2 {\rm{cos(}}\omega {\rm{t + }}{\varphi _u})\) (với \(U,\omega \) không đổi). Điều chỉnh L tới giá trị L1 thì hiệu điện thế hiệu dụng hai đầu cuộn cảm đạt giá trị cực đại và bằng ULmax. Gọi UCmax là giá trị hiệu điện thế hiệu dụng cực đại ở hai đầu tụ điện. Cho biết \({U_{L\max }} = \sqrt 5 {U_{Rm{\rm{ax}}}}\) . Hệ thức nào sau đây là đúng?


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

"/lop-12/chi-tiet-ly-thuyet-bai-tap-mach-xoay-chieu-rlc-co-l-thay-doi-5af3eae91261631175a05d94.html

#c1">Vận dụng lí thuyết L biến thiên

Xem lời giải

Lời giải của Tự Học 365

- L biến thiên để URmax, UCmax<=> cộng hưởng điện

Khi đó: \(\left\{ \begin{array}{l}{U_{{R_{{\rm{max}}}}}} = U\\{U_{{C_{{\rm{max}}}}}} = \frac{U}{R}{Z_C}\end{array} \right.\)

- L biến thiên để ULmax

Khi đó: \({U_{{L_{{\rm{max}}}}}} = \dfrac{{U\sqrt {{R^2} + Z_C^2} }}{R}\)

Theo đề bài, ta có:

\(\begin{array}{l}{U_{{L_{{\rm{max}}}}}} = \sqrt 5 {U_{{R_{{\rm{max}}}}}} = \sqrt 5 U\\ \to \dfrac{{U\sqrt {{R^2} + Z_C^2} }}{R} = \sqrt 5 U \to \sqrt {{R^2} + Z_C^2}  = \sqrt 5 R\\ \to Z_C^2 = 4{R^2} \to {Z_C} = 2R\end{array}\)

=> Tỉ số: \(\dfrac{{{U_{{C_{{\rm{max}}}}}}}}{{{U_{{L_{{\rm{max}}}}}}}} = \dfrac{{\dfrac{U}{R}{Z_C}}}{{\sqrt 5 U}} = \dfrac{{{Z_C}}}{{\sqrt 5 R}} = \dfrac{{2R}}{{\sqrt 5 R}} = \dfrac{2}{{\sqrt 5 }}\)

Đáp án cần chọn là: a

Vật lý Lớp 12