Câu 37204 - Tự Học 365
Câu hỏi Vận dụng

Một lò xo nhẹ có khối lượng không đáng kể được cắt thành 3 lò xo có chiều dài theo tỉ lệ \(2\):\(2\):\(1\). Vật có khối lượng m được treo vào lò xo thứ nhất thì dãn \(10 cm\). Lấy \(\pi^2 =10\). Nếu treo vật vào lò xo thứ 3 thì chu kì dao động điều hòa của hệ là 


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Khi cắt một lò xo thành nhiều phần, độ cứng lò xo tỉ lệ nghịch với chiều dài.

Chu kì dao động của con lắc lò xo: \(T = 2\pi \sqrt {\dfrac{m}{k}} \)

Xem lời giải

Lời giải của Tự Học 365

+Khi cắt lò xo thành 3 phần, ta có:

\(k\ell  = {k_1}{\ell _1} = {k_3}{\ell _3} \\\to \dfrac{{{k_1}2\ell }}{5} = \dfrac{{{k_3}\ell }}{5} \\\to {k_3} = 2{k_1}.\)

+ Khi treo vật vào lò xo thứ nhất, tại vị trí cân bằng ta có: \(mg = {k_1}\Delta {l_1}\)

\( \Rightarrow \dfrac{m}{{{k_1}}} = \dfrac{{\Delta {l_1}}}{g} = \dfrac{{0,1}}{{10}} = 0,01\)

Chu kì dao động khi đó: \({T_1} = 2\pi \sqrt {\dfrac{m}{{{k_1}}}}  = 2\pi \sqrt {0,01}  = \dfrac{\pi }{5}s = \dfrac{{\sqrt {10} }}{5}s\)

+ Khi treo vật vào lò xo thứ ba, ta có chu kì dao động của vật \({T_3} = 2\pi \sqrt {\dfrac{m}{{{k_3}}}} \)

Ta có:  \(\dfrac{{{T_1}}}{{{T_3}}} = \dfrac{{2\pi \sqrt {\dfrac{m}{{{k_1}}}} }}{{2\pi \sqrt {\dfrac{m}{{{k_3}}}} }} = \sqrt {\dfrac{{{k_3}}}{{{k_1}}}} \)

Lại có \(\dfrac{{{k_1}}}{{{k_3}}} = \dfrac{1}{2}\)

Suy ra: \(\dfrac{{{T_1}}}{{{T_3}}} = \sqrt 2  \Rightarrow {T_3} = \dfrac{{{T_1}}}{{\sqrt 2 }} = \dfrac{{\dfrac{{\sqrt {10} }}{5}}}{{\sqrt 2 }} = \dfrac{{\sqrt 5 }}{5}s\)

Đáp án cần chọn là: c

Vật lý Lớp 12