Trong con lắc lò xo nếu ta tăng khối lượng vật nặng lên \(4\) lần và độ cứng tăng \(2\) lần thì tần số dao động của vật:
Phương pháp giải
Vận dụng biểu thức xác định tần số dao động của con lắc lò xo: \(f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{m}} \)
Lời giải của Tự Học 365
Ta có, tần số dao động của con lắc lò xo: \(f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{m}} \)
Khi tăng khối lượng lên 4 lần và độ cứng tăng 2 lần tức là \(\left\{ \begin{array}{l}m' = 4m\\k' = 2k\end{array} \right.\)
Tần số dao động của con lắc khi này: \(f' = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{k'}}{{m'}}} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{2k}}{{4m}}} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{{2m}}} \)
\(\dfrac{{f'}}{f} = \dfrac{{\dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{{2m}}} }}{{\dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{m}} }} = \dfrac{1}{{\sqrt 2 }}\)
\( \Rightarrow f' = \dfrac{f}{{\sqrt 2 }}\)
Hay nói cách khác khi tăng khối lượng lên $4$ lần và độ cứng tăng $2$ lần thì tần số dao động sẽ giảm \(\sqrt 2 \) lần
Đáp án cần chọn là: d
Vật lý Lớp 12