[LỜI GIẢI] Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại đỉnh A(6;6), đườn - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại đỉnh A(6;6), đườn

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại đỉnh A(6;6), đườn

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại đỉnh A(6;6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y – 4 = 0. Có bao nhiêu cặp điểm B, C thỏa mãn yêu cầu bài toán, biết điểm E(1; - 3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho.


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Gọi M là trung điểm của BC. Do tam giác ABC cân tại A nên A và M đối xứng nhau qua đường trung bình DN: x + y – 4 = 0. Đường thẳng \(AM \bot DN\)và đi qua A có phương trình x - y = 0

 

 

\(I = d \cap AM \Rightarrow \) Tọa độ điểm I là nghiệm của hệ\(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow x = y = 2 \Rightarrow I\left( {2;2} \right) \Rightarrow M\left( { - 2; - 2} \right)\)

 

Đường thẳng BC đi qua M và song song với DN có phương trình x + y + 4 = 0  Tọa độ đỉnh B có dạng\(B\left( {t; - 4 - t} \right)\) , C đối xứng với B qua M  \( \Rightarrow C\left( { - 4 - t;t} \right)\)

\(\begin{array}{l}\overrightarrow {CE}  = \left( {t + 5; - 3 - t} \right),\overrightarrow {AB}  = \left( {t - 6; - t - 10} \right)\\AB \bot CE \Rightarrow \overrightarrow {AB} .\overrightarrow {CE}  = 0 \Leftrightarrow \left( {t + 5} \right)\left( {t - 6} \right) + \left( { - 3 - t} \right)\left( { - t - 10} \right) = 0\\ \Leftrightarrow {t^2} - t - 30 + {t^2} + 13t + 30 = 0\\ \Leftrightarrow 2{t^2} + 12t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t =  - 6\end{array} \right. \Leftrightarrow\left[ \begin{array}{l}\left\{ \begin{array}{l}B\left( {0; - 4} \right)\\C\left( { - 4;0} \right)\end{array} \right.\\\left\{ \begin{array}{l}B\left( { - 6;2} \right)\\C\left( {2; - 6} \right)\end{array} \right.\end{array} \right.\end{array}\)

 

 

\(\begin{array}{l}\overrightarrow {CE}  = \left( {t + 5; - 3 - t} \right),\overrightarrow {AB}  = \left( {t - 6; - t - 10} \right)\\AB \bot CE \Rightarrow \overrightarrow {AB} .\overrightarrow {CE}  = 0 \Leftrightarrow \left( {t + 5} \right)\left( {t - 6} \right) + \left( { - 3 - t} \right)\left( { - t - 10} \right) = 0\\ \Leftrightarrow {t^2} - t - 30 + {t^2} + 13t + 30 = 0\\ \Leftrightarrow 2{t^2} + 12t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t =  - 6\end{array} \right. \Leftrightarrow\left[ \begin{array}{l}\left\{ \begin{array}{l}B\left( {0; - 4} \right)\\C\left( { - 4;0} \right)\end{array} \right.\\\left\{ \begin{array}{l}B\left( { - 6;2} \right)\\C\left( {2; - 6} \right)\end{array} \right.\end{array} \right.\end{array}\)M đối xứng nhau qua đường trung bình DN: x + y – 4 = 0. Đường thẳng  và đi qua A có phương trình  .

 Tọa độ điểm I là nghiệm của hệ

Đường thẳng BC đi qua M và song song với DN có phương trình x + y + 4 = 0  Tọa độ đỉnh B có dạng , C đối xứng với B qua M  

Ý kiến của bạn