[LỜI GIẢI] Trong mặt phẳng tọa độ Oxy cho đường thẳng Delta có phương trình x3 + y4 = 1. Gọi A B là các giao đ - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong mặt phẳng tọa độ Oxy cho đường thẳng Delta có phương trình x3 + y4 = 1. Gọi A B là các giao đ

Trong mặt phẳng tọa độ Oxy cho đường thẳng Delta có phương trình x3 + y4 = 1. Gọi A B là các giao đ

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\Delta \) có phương trình \(\frac{x}{3} + \frac{y}{4} = 1\). Gọi \(A,\) \(B\) là các giao điểm của đường thẳng \(\Delta \) với các trục tọa độ. Độ dài của đoạn thẳng \(AB\) bằng:


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Gọi \(A\left( {a;\,\,0} \right),\,\,B\left( {0;\,\,b} \right)\) lần lượt là giao điểm của đường thẳng \(\Delta \) và trục \(Ox\), \(Oy\).

+) Vì \(A\left( {a;\,\,0} \right) \in \left( \Delta \right):\,\,\frac{x}{3} + \frac{y}{4} = 1\) nên ta có \(\frac{a}{3} + \frac{0}{4} = 1 \Leftrightarrow \frac{a}{3} = 1 \Leftrightarrow a = 3\)

\( \Rightarrow A\left( {3;\,\,0} \right)\)

+) Vì \(B\left( {0;\,\,b} \right) \in \left( \Delta \right):\,\frac{x}{3}\, + \frac{y}{4} = 1\) nên ta có \(\frac{0}{3} + \frac{b}{4} = 1 \Rightarrow \frac{b}{4} = 1 \Leftrightarrow b = 4\)

\( \Rightarrow B\left( {0;\,\,4} \right)\)

Ta có: \(A\left( {3;\,\,0} \right),\,\,B\left( {0;\,\,4} \right) \Rightarrow AB = \sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {4 - 0} \right)}^2}} = \sqrt {{3^2} + {4^2}} = \sqrt {25} = 5\)

Chọn D

Ý kiến của bạn