[LỜI GIẢI] Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất

Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất

Câu hỏi

Nhận biết

Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Kẻ BH ⊥ AC

SIBC = 1/2BH.IC = 1/2IB.IC.sin

Do = 1800 – 2 không đổi nên SIBC lớn nhất khi IB.IC lớn nhất

IB.IC = IA.IC ≤ ()2 = ≤ R2

Dấu “=” xảy ra ⇔ IA = IC và A đối xứng với C qua tâm O

Ý kiến của bạn