Tìm tất cả các giá trị \(m\) để bất phương trình \({x^2} - 2\left( {m - 1} \right)x + 4m + 8 \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\).
Giải chi tiết:
Ta có: \(\Delta ' = {\left( {m - 1} \right)^2} - \left( {4m + 8} \right) = {m^2} - 6m - 7\)
Bất phương trình \({x^2} - 2\left( {m - 1} \right)x + 4m + 8 \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\).
\( \Leftrightarrow \Delta ' \le 0 \Leftrightarrow {m^2} - 6m - 7 \le 0 \Leftrightarrow \left( {m + 1} \right)\left( {m - 7} \right) \le 0 \Leftrightarrow - 1 \le m \le 7\)
Chọn C.