[LỜI GIẢI] Tìm m để parabol ( P ):y = x^2 - 2( m + 1 )x + m^2 - 3 cắt trục hoành tại 2 điểm phân biệt có hoành - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm m để parabol ( P ):y = x^2 - 2( m + 1 )x + m^2 - 3 cắt trục hoành tại 2 điểm phân biệt có hoành

Tìm m để parabol ( P ):y = x^2 - 2( m + 1 )x + m^2 - 3 cắt trục hoành tại 2 điểm phân biệt có hoành

Câu hỏi

Nhận biết

Tìm m để parabol \(\left( P \right):\,\,y = {x^2} - 2\left( {m + 1} \right)x + {m^2} - 3\) cắt trục hoành tại 2 điểm phân biệt có hoành độ \({x_1};{x_2}\) sao cho \({x_1}{x_2} = 1\).


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Xét phương trình hoành độ giao điểm: \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 3 = 0\,\,\left( * \right)\).

Để (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ \({x_1};{x_2}\)thì phương trình (*) có 2 nghiệm phân biệt.

Ta có \(\Delta ' = {\left( {m + 1} \right)^2} - {m^2} + 3 = 2m + 4 > 0 \Leftrightarrow m >  - 2\).

Khi đó theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m + 2\\{x_1}{x_2} = {m^2} - 3\end{array} \right.\)

Theo đề bài ta có \({x_1}{x_2} = 1 \Leftrightarrow {m^2} - 3 = 1 \Leftrightarrow \left[ \begin{array}{l}m = 2\,\,\left( {tm} \right)\\m =  - 2\,\,\left( {ktm} \right)\end{array} \right.\)

Chọn đáp án A.

Ý kiến của bạn