Tìm m để parabol \(\left( P \right):\,\,y = {x^2} - 2\left( {m + 1} \right)x + {m^2} - 3\) cắt trục hoành tại 2 điểm phân biệt có hoành độ \({x_1};{x_2}\) sao cho \({x_1}{x_2} = 1\).
Giải chi tiết:
Xét phương trình hoành độ giao điểm: \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 3 = 0\,\,\left( * \right)\).
Để (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ \({x_1};{x_2}\)thì phương trình (*) có 2 nghiệm phân biệt.
Ta có \(\Delta ' = {\left( {m + 1} \right)^2} - {m^2} + 3 = 2m + 4 > 0 \Leftrightarrow m > - 2\).
Khi đó theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m + 2\\{x_1}{x_2} = {m^2} - 3\end{array} \right.\)
Theo đề bài ta có \({x_1}{x_2} = 1 \Leftrightarrow {m^2} - 3 = 1 \Leftrightarrow \left[ \begin{array}{l}m = 2\,\,\left( {tm} \right)\\m = - 2\,\,\left( {ktm} \right)\end{array} \right.\)
Chọn đáp án A.