[LỜI GIẢI] Tìm giao điểm của hai đường tròn ( C1 ):x^2 + y^2 - 2 = 0 và ( C2 ):x^2 + y^2 - 2x = 0. - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm giao điểm của hai đường tròn ( C1 ):x^2 + y^2 - 2 = 0 và ( C2 ):x^2 + y^2 - 2x = 0.

Tìm giao điểm của hai đường tròn ( C1 ):x^2 + y^2 - 2 = 0 và ( C2 ):x^2 + y^2 - 2x = 0.

Câu hỏi

Nhận biết

Tìm giao điểm của hai đường tròn \(\left( {{C_1}} \right):\,\,{x^2} + {y^2} - 2 = 0\) và \(\left( {{C_2}} \right):{x^2} + {y^2} - 2x = 0\).


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Tọa độ giao điểm của hai đường tròn \(\left( {{C_1}} \right):\,\,{x^2} + {y^2} - 2 = 0\) và \(\left( {{C_2}} \right):{x^2} + {y^2} - 2x = 0\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}{x^2} + {y^2} - 2 = 0\\{x^2} + {y^2} - 2x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 2 = 0\\2 - 2x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{1^2} + {y^2} - 2 = 0\\x = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = 1\\y =  - 1\end{array} \right.\\x = 1\end{array} \right.\)

Vậy, tọa độ 2 giao điểm là \(\left( {1; - 1} \right)\) và \(\left( {1;1} \right)\).

Chọn: C

Ý kiến của bạn