Tìm giao điểm của hai đường tròn \(\left( {{C_1}} \right):\,\,{x^2} + {y^2} - 2 = 0\) và \(\left( {{C_2}} \right):{x^2} + {y^2} - 2x = 0\).
Giải chi tiết:
Tọa độ giao điểm của hai đường tròn \(\left( {{C_1}} \right):\,\,{x^2} + {y^2} - 2 = 0\) và \(\left( {{C_2}} \right):{x^2} + {y^2} - 2x = 0\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}{x^2} + {y^2} - 2 = 0\\{x^2} + {y^2} - 2x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 2 = 0\\2 - 2x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{1^2} + {y^2} - 2 = 0\\x = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = 1\\y = - 1\end{array} \right.\\x = 1\end{array} \right.\)
Vậy, tọa độ 2 giao điểm là \(\left( {1; - 1} \right)\) và \(\left( {1;1} \right)\).
Chọn: C