[LỜI GIẢI] Tìm giá trị thực của tham số m để phương trình ( m^2 - 5m + 6 )x = m^2 - 2m vô nghiệm? - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tìm giá trị thực của tham số m để phương trình ( m^2 - 5m + 6 )x = m^2 - 2m vô nghiệm?

Tìm giá trị thực của tham số m để phương trình ( m^2 - 5m + 6 )x = m^2 - 2m vô nghiệm?

Câu hỏi

Nhận biết

Tìm giá trị thực của tham số m để phương trình \(\left( {{m^2} - 5m + 6} \right)x = {m^2} - 2m\) vô nghiệm?


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình \(\left( {{m^2} - 5m + 6} \right)x = {m^2} - 2m\) vô nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m + 6 = 0\\{m^2} - 2m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 3\\m = 2\end{array} \right.\\\left\{ \begin{array}{l}m \ne 0\\m \ne 2\end{array} \right.\end{array} \right. \Leftrightarrow m = 3\).

Vậy \(m = 3\).

Chọn C.

Ý kiến của bạn