Tìm giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,\,{x_2}\) thỏa mãn: \(\left( {x_1^2 - m{x_1} + m} \right)\left( {x_2^2 - m{x_2} + m} \right) = 2.\)
Giải chi tiết:
Phương trình có hai nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 \ne 0\\\Delta = {\left( {m + 1} \right)^2} - 4\left( {m - 4} \right) \ge 0\end{array} \right.\)
\( \Leftrightarrow {m^2} + 2m + 1 - 4m + 16 \ge 0 \Leftrightarrow {m^2} - 2m + 17 \ge 0\) (luôn đúng do \({m^2} - 2m + 17 = {\left( {m - 1} \right)^2} + 16 > 0,\forall m\))
Do đó phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt \({x_1},{x_2}\).
Ta có: \({x^2} - \left( {m + 1} \right)x + m - 4 = 0 \Leftrightarrow {x^2} - mx - x + m - 4 = 0 \Leftrightarrow {x^2} - mx + m = x + 4\)
Do \({x_1},{x_2}\) là nghiệm của \(\left( 1 \right)\) nên \(\left\{ \begin{array}{l}x_1^2 - m{x_1} + m = {x_1} + 4\\x_2^2 - m{x_2} + m = {x_2} + 4\end{array} \right.\)
Thay vào đẳng thức bài cho ta được \(\left( {{x_1} + 4} \right)\left( {{x_2} + 4} \right) = 2\)
\( \Leftrightarrow {x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) + 16 = 2 \Leftrightarrow {x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) + 14 = 0\,\,\left( 2 \right)\)
Theo định lý Vi – et \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 1\\{x_1}{x_2} = m - 4\end{array} \right.\), thay vào \(\left( 2 \right)\) ta được:
\(m - 4 + 4\left( {m + 1} \right) + 14 = 0 \Leftrightarrow 5m + 14 = 0 \Leftrightarrow m = - \frac{{14}}{5}\).
Vậy \(m = - \frac{{14}}{5}\) là giá trị cần tìm.
Chọn A.