[LỜI GIẢI] Tập nghiệm của bất phương trình ( căn 2x + 4  - căn x + 1 )( căn 2 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Tập nghiệm của bất phương trình ( căn 2x + 4  - căn x + 1 )( căn 2

Tập nghiệm của bất phương trình ( căn  2x + 4  - căn  x + 1  )( căn  2

Câu hỏi

Nhận biết

Tập nghiệm của bất phương trình \( \left( { \sqrt {2x + 4} - \sqrt {x + 1} } \right) \left( { \sqrt {2x + 1} + \sqrt {x + 4} } \right) \le x + 3 \) là tập con của tập hợp nào sau đây?


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

ĐKXĐ: \(x \ge  - \frac{1}{2}\)

\(\begin{array}{l}\,\,\,\,\,\,\,\,\left( {\sqrt {2x + 4}  - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4} } \right) \le x + 3\\ \Leftrightarrow \left( {\sqrt {2x + 4}  - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 4}  + \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4} } \right) \le \left( {x + 3} \right)\left( {\sqrt {2x + 4}  + \sqrt {x + 1} } \right)\\ \Leftrightarrow \left( {x + 3} \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4} } \right) \le \left( {x + 3} \right)\left( {\sqrt {2x + 4}  + \sqrt {x + 1} } \right)\\ \Leftrightarrow \left( {x + 3} \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4}  - \sqrt {2x + 4}  - \sqrt {x + 1} } \right) \le 0\\ \Leftrightarrow \sqrt {2x + 1}  + \sqrt {x + 4}  - \sqrt {2x + 4}  - \sqrt {x + 1}  \le 0\,\,\,\,\,\left( {do\,\,\,x + 3 > 0\,\,\,\forall x \ge  - \frac{1}{2}} \right)\\ \Leftrightarrow \sqrt {2x + 1}  + \sqrt {x + 4}  \le \sqrt {2x + 4}  + \sqrt {x + 1} \\ \Leftrightarrow 3x + 5 + 2\sqrt {\left( {2x + 1} \right)\left( {x + 4} \right)}  \le 3x + 5 + 2\sqrt {\left( {2x + 4} \right)\left( {x + 1} \right)} \\ \Leftrightarrow \left( {2x + 1} \right)\left( {x + 4} \right) \le \left( {2x + 4} \right)\left( {x + 1} \right)\\ \Leftrightarrow 2{x^2} + 9x + 4 \le 2{x^2} + 6x + 4\\ \Leftrightarrow 3x \le 0 \Leftrightarrow x \le 0\end{array}\)        

Kết hợp ĐKXĐ \( \Rightarrow x \in \left[ { - \frac{1}{2};0} \right] \subset \left( { - \frac{2}{3};\frac{1}{2}} \right)\)

Chọn A.

Ý kiến của bạn