[LỜI GIẢI] Số nghiệm của phương trình 2( 1 - x ) căn x^2 + 2 x - 1  = x^2 - 2 x - 1 là: - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Số nghiệm của phương trình 2( 1 - x ) căn x^2 + 2 x - 1  = x^2 - 2 x - 1 là:

Số nghiệm của phương trình 2( 1 - x ) căn x^2 + 2 x - 1  = x^2 - 2 x - 1 là:

Câu hỏi

Nhận biết

Số nghiệm của phương trình \(2\left( {1 - x} \right)\sqrt {{x^2} + 2{\rm{x}} - 1} = {x^2} - 2{\rm{x}} - 1\) là:


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(2\left( {1 - x} \right)\sqrt {{x^2} + 2{\rm{x}} - 1} = {x^2} - 2{\rm{x}} - 1 \Leftrightarrow 2\left( {1 - x} \right)\sqrt {{x^2} + 2{\rm{x}} - 1} = \left( {{x^2} + 2{\rm{x}} - 1} \right) + 4(1 - x) - 4\)

Đặt \(\sqrt {{x^2} + 2{\rm{x}} - 1} = u\left( {u \ge 0} \right);1 - x = v\)

Phương trình trở thành: \(2uv = {u^2} + 4v - 4\)

\(\begin{array}{l} \Leftrightarrow {u^2} - 4 + 4v - 2uv = 0 \Leftrightarrow \left( {{u^2} - 4} \right) - 2v(u - 2) = 0\\ \Leftrightarrow \left( {u - 2} \right)\left( {u + 2 - 2v} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}u = 2\,\,\,\left( {tm} \right)\\u + 2 - 2v = 0\end{array} \right.\end{array}\)

+) Với u = 2\( \Leftrightarrow \sqrt {{x^2} + 2{\rm{x}} - 1} = 2 \Leftrightarrow {x^2} + 2{\rm{x}} - 5 = 0 \Leftrightarrow x = - 1 \pm \sqrt 6 \)

+) Với u + 2 – 2v = 0\( \Leftrightarrow \sqrt {{x^2} + 2{\rm{x}} - 1}+ 2 - 2\left( {1 - x} \right) = 0 \Leftrightarrow \sqrt {{x^2} + 2{\rm{x}} - 1} = - 2{\rm{x}}\) 

Điều kiện \(x \le 0\)

Phương trình \( \Leftrightarrow {x^2} + 2{\rm{x}} - 1 = 4{{\rm{x}}^2} \Leftrightarrow 3{x^2} - 2x + 1 = 0\)(vô nghiệm)

Vậy phương trình có 2 nghiệm.

Chọn B

Ý kiến của bạn