Số nghiệm của phương trình \(2\left( {1 - x} \right)\sqrt {{x^2} + 2{\rm{x}} - 1} = {x^2} - 2{\rm{x}} - 1\) là:
Giải chi tiết:
Ta có: \(2\left( {1 - x} \right)\sqrt {{x^2} + 2{\rm{x}} - 1} = {x^2} - 2{\rm{x}} - 1 \Leftrightarrow 2\left( {1 - x} \right)\sqrt {{x^2} + 2{\rm{x}} - 1} = \left( {{x^2} + 2{\rm{x}} - 1} \right) + 4(1 - x) - 4\)
Đặt \(\sqrt {{x^2} + 2{\rm{x}} - 1} = u\left( {u \ge 0} \right);1 - x = v\)
Phương trình trở thành: \(2uv = {u^2} + 4v - 4\)
\(\begin{array}{l} \Leftrightarrow {u^2} - 4 + 4v - 2uv = 0 \Leftrightarrow \left( {{u^2} - 4} \right) - 2v(u - 2) = 0\\ \Leftrightarrow \left( {u - 2} \right)\left( {u + 2 - 2v} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}u = 2\,\,\,\left( {tm} \right)\\u + 2 - 2v = 0\end{array} \right.\end{array}\)
+) Với u = 2\( \Leftrightarrow \sqrt {{x^2} + 2{\rm{x}} - 1} = 2 \Leftrightarrow {x^2} + 2{\rm{x}} - 5 = 0 \Leftrightarrow x = - 1 \pm \sqrt 6 \)
+) Với u + 2 – 2v = 0\( \Leftrightarrow \sqrt {{x^2} + 2{\rm{x}} - 1}+ 2 - 2\left( {1 - x} \right) = 0 \Leftrightarrow \sqrt {{x^2} + 2{\rm{x}} - 1} = - 2{\rm{x}}\)
Điều kiện \(x \le 0\)
Phương trình \( \Leftrightarrow {x^2} + 2{\rm{x}} - 1 = 4{{\rm{x}}^2} \Leftrightarrow 3{x^2} - 2x + 1 = 0\)(vô nghiệm)
Vậy phương trình có 2 nghiệm.
Chọn B