Rút gọn biểu thức \(P = { \left( { \frac{{ \cos x + \cot x}}{{1 + \sin x}}} \right)^2} + 1 \) ta được:
Giải chi tiết:
\(\begin{array}{l}P = {\left( {\frac{{\cos x + \cot x}}{{1 + \sin x}}} \right)^2} + 1 = {\left( {\frac{{\cos x + \frac{{\cos x}}{{\sin x}}}}{{1 + \sin x}}} \right)^2} + 1 = {\left[ {\frac{{\cos x.\sin x + \cos x}}{{\sin x\left( {1 + \sin x} \right)}}} \right]^2} + 1\\ = {\left[ {\frac{{\cos x\left( {\sin x + 1} \right)}}{{\sin x\left( {1 + \sin x} \right)}}} \right]^2} + 1 = {\left( {\frac{{\cos x}}{{\sin x}}} \right)^2} + 1 = \frac{{{{\cos }^2}x + {{\sin }^2}x}}{{{{\sin }^2}x}} = \frac{1}{{{{\sin }^2}x}}.\end{array}\)
Chọn B.