Quãng đường AB dài 160 km. Hai xe khởi hành cùng một lúc từ A để đi đến B. Vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai là 10 km/h nên xe thứ nhất đến B sớm hơn xe thứ hai là 48 phút. Tính vận tốc của xe thứ hai.
Giải chi tiết:
Quãng đường AB dài 160 km. Hai xe khởi hành cùng một lúc từ A để đi đến B. Vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai là 10 km/h nên xe thứ nhất đến B sớm hơn xe thứ hai là 48 phút. Tính vận tốc của xe thứ hai.
Gọi vận tốc của xe thứ hai là \(x\left( {km/h} \right),\,\,\left( {x > 0} \right)\)
Vận tốc của xe thứ nhất là: \(x + 10\left( {km/h} \right)\)
Thời gian xe thứ nhất đi hết quãng đường AB là:: \(\frac{{160}}{{x + 10}}\left( h \right)\)
Thời gian xe thứ hai đi hết quãng đường AB là: \(\frac{{160}}{x}\,\,\left( h \right)\)
Ta có xe thứ nhất đến B sớm hơn xe thứ hai là 48 phút: \( = \frac{{48}}{{60}} = \frac{4}{5}\,\,\left( h \right)\)
Theo bài ra ta có phương trình:
\(\begin{array}{l}\;\;\;\;\;\frac{{160}}{x} - \frac{{160}}{{x + 10}} = \frac{4}{5}\\ \Leftrightarrow 160.5.\left( {x + 10} \right) - 160.5.x = 4x\left( {x + 10} \right)\\ \Leftrightarrow 800x + 8000 - 800x = 4{x^2} + 40x\\ \Leftrightarrow {x^2} + 10x - 2000 = 0\\ \Leftrightarrow \left( {x - 40} \right)\left( {x + 50} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 40 = 0\\x + 50 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 40\left( {tm} \right)\\x = - 50\left( {ktm} \right)\end{array} \right.\end{array}\)
Vậy xe thứ hai đi với vận tốc là: 40km/h.
Chọn D.