[LỜI GIẢI] Kết luận nào sau đây đúng khi nói về số nghiệm của hệ phương trình l( 1 + y^2 ) + x( x - 2y ) = 5x( - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Kết luận nào sau đây đúng khi nói về số nghiệm của hệ phương trình l( 1 + y^2 ) + x( x - 2y ) = 5x(

Kết luận nào sau đây đúng khi nói về số nghiệm của hệ phương trình l( 1 + y^2 ) + x( x - 2y ) = 5x(

Câu hỏi

Nhận biết

Kết luận nào sau đây đúng khi nói về số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\left( {1 + {y^2}} \right) + x\left( {x - 2y} \right) = 5x\,(1)\\\left( {1 + {y^2}} \right)\left( {x - 2y - 2} \right) = 2x\,(2)\end{array} \right.\)(I)


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Do x = 0 không thoả mãn hệ nên ta có

Hệ (I) \( \Leftrightarrow \left\{ \begin{array}{l}\frac{{1 + {y^2}}}{x} + \left( {x - 2y} \right) = 5\,\\\frac{{1 + {y^2}}}{x}\left( {x - 2y - 2} \right) = 2\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{1 + {y^2}}}{x} + \left( {x - 2y - 2} \right) = 3\,\\\frac{{1 + {y^2}}}{x}\left( {x - 2y - 2} \right) = 2\,\end{array} \right.\)

Đặt \(\left\{ \begin{array}{l}u = \frac{{1 + {y^2}}}{x}\\v = x - 2y - 2\end{array} \right.\) , hệ phương trình trở thành \(\left\{ \begin{array}{l}u + v = 3\,\\u.v = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}u = 2\\v = 1\end{array} \right.\\\left\{ \begin{array}{l}u = 1\\v = 2\end{array} \right.\end{array} \right.\)

Với \(\left\{ \begin{array}{l}u = 2\\v = 1\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\frac{{1 + {y^2}}}{x} = 2\\x - 2y - 2 = 1\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = 2x\\x - 2y - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = 2x\\2x - 4y - 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = 2x\\1 + {y^2} - 4y - 6 = 0\end{array} \right.\\\Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = 2x\\{y^2} - 4y - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = 2x\\\left[ \begin{array}{l}y =  - 1\\y = 5\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y =  - 1\\x = 1\end{array} \right.\\\left\{ \begin{array}{l}y = 5\\x = 13\end{array} \right.\end{array} \right.\end{array}\)

Với \(\left\{ \begin{array}{l}u = 1\\v = 2\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\frac{{1 + {y^2}}}{x} = 1\\x - 2y - 2 = 2\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = x\\x - 2y - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = x\\1 + {y^2} - 2y - 4 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = x\\{y^2} - 2y - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + {y^2} = x\\\left[ \begin{array}{l}y =  - 1\\y = 3\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y =  - 1\\x = 2\end{array} \right.\\\left\{ \begin{array}{l}y = 3\\x = 10\end{array} \right.\end{array} \right.\end{array}\)

Hệ phương trình có 4 nghiệm\((x;y)\) là \((1; - 1),\left( {(13;5} \right),\left( {2; - 1} \right)\) và \((10;3)\)

Chọn D

Ý kiến của bạn