Giải phương trình: \(3\sqrt 3 \left( {{x^2} + 4x + 2} \right) - \sqrt {x + 8} = 0.\)
Giải chi tiết:
Giải phương trình: \(3\sqrt 3 \left( {{x^2} + 4x + 2} \right) - \sqrt {x + 8} = 0.\)
Điều kiện \(x + 8 \ge 0 \Leftrightarrow x \ge - 8.\)
\(\begin{array}{l}\;\;\;\;3\sqrt 3 \left( {{x^2} + 4x + 2} \right) - \sqrt {x + 8} = 0\\ \Leftrightarrow 9\left( {{x^2} + 4x + 2} \right) = \sqrt 3 .\sqrt {x + 8} \\ \Leftrightarrow 9{x^2} + 36x + 18 = \sqrt {3x + 24} \\ \Leftrightarrow 9{x^2} + 39x + \frac{{169}}{4} = 3x + 24 + \sqrt {3x + 24} + \frac{1}{4}\\ \Leftrightarrow {\left( {3x + \frac{{13}}{2}} \right)^2} = {\left( {\sqrt {3x + 24} + \frac{1}{2}} \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l}3x + \frac{{13}}{2} = \sqrt {3x + 24} + \frac{1}{2}\\3x + \frac{{13}}{2} = - \sqrt {3x + 24} - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x + 6 = \sqrt {3x + 24} \\3x + 7 = - \sqrt {3x + 24} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}3x + 6 \ge 0\\{\left( {3x + 6} \right)^2} = 3x + 24\end{array} \right.\\\left\{ \begin{array}{l}3x + 7 \le 0\\{\left( {3x + 7} \right)^2} = 3x + 24\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \ge - 2\\3{x^2} + 11x + 4 = 0\end{array} \right.\\\left\{ \begin{array}{l}x \le - \frac{7}{3}\\9{x^2} + 39x + 25 = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \ge - 2\\\left[ \begin{array}{l}x = \frac{{ - 11 + \sqrt {73} }}{6}\\x = \frac{{ - 11 - \sqrt {73} }}{6}\end{array} \right.\end{array} \right.\\\left\{ \begin{array}{l}x \le - \frac{7}{3}\\\left[ \begin{array}{l}x = \frac{{ - 13 - \sqrt {69} }}{6}\\x = \frac{{ - 13 + \sqrt {69} }}{6}\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 11 + \sqrt {73} }}{6}\\x = \frac{{ - 13 - \sqrt {69} }}{6}\end{array} \right..\end{array}\)
Vậy phương trình có tập nghiệm: \(S = \left\{ {\frac{{ - 11 + \sqrt {73} }}{6};\;\frac{{ - 13 - \sqrt {69} }}{6}} \right\}.\)
Chọn D.