Giải hệ phương trình: \( \left \{ \begin{array}{l}{x^2} + {y^2} = 2 \ \ \left( {x + 2y} \right) \left( {2 + 3{y^2} + 4xy} \right) = 27 \end{array} \right.. \)
Giải chi tiết:
\(\begin{array}{l}\left\{ \begin{array}{l}{x^2} + {y^2} = 2\\\left( {x + 2y} \right)\left( {2 + 3{y^2} + 4xy} \right) = 27\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 2\\\left( {x + 2y} \right)\left( {{x^2} + {y^2} + 3{y^2} + 4xy} \right) = 27\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 2\\\left( {x + 2y} \right)\left( {{x^2} + 4xy + 4{y^2}} \right) = 27\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 2\\\left( {x + 2y} \right){\left( {x + 2y} \right)^2} = 27\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 2\\{\left( {x + 2y} \right)^3} = 27\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 2\\x + 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 2\\x = 3 - 2y\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {3 - 2y} \right)^2} + {y^2} = 2\\x = 3 - 2y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{y^2} - 12y + 7 = 0\\x = 3 - 2y\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = 1\\y = \frac{7}{5}\end{array} \right.\\x = 3 - 2y\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\\\left\{ \begin{array}{l}x = \frac{1}{5}\\y = \frac{7}{5}\end{array} \right.\end{array} \right.\end{array}\)
Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {1;1} \right)\) hoặc \(\left( {\frac{1}{5};\frac{7}{5}} \right)\).
Chọn D.