[LỜI GIẢI] Chứng minh rằng phương trình: x^2 - 2( m - 1 )x + 2m - 4 = 0 luôn có hai nghiệm phân biệt x1x2. Tìm - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Chứng minh rằng phương trình: x^2 - 2( m - 1 )x + 2m - 4 = 0 luôn có hai nghiệm phân biệt x1x2. Tìm

Chứng minh rằng phương trình: x^2 - 2( m - 1 )x + 2m - 4 = 0 luôn có hai nghiệm phân biệt x1x2. Tìm

Câu hỏi

Nhận biết

Chứng minh rằng phương trình: \({x^2} - 2\left( {m - 1} \right)x + 2m - 4 = 0\) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}.\) Tìm giá trị nhỏ nhất của biểu thức: \(A = x_1^2 + x_2^2.\)


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Chứng minh rằng phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 4 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}.\) Tìm giá trị nhỏ nhất của biểu thức \(A = x_1^2 + x_2^2.\)

Ta có: \(\Delta ' = {\left( {m - 1} \right)^2} - \left( {2m - 4} \right) = {m^2} - 2m + 1 - 2m + 4 = {m^2} - 4m + 5\)

\( = \left( {{m^2} - 4m + 4} \right) + 1 = {\left( {m - 2} \right)^2} + 1 > 0,\forall m\)

\( \Rightarrow \) Phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m\).

Theo định lý Vi – et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = 2m - 4\end{array} \right.\).

Theo đề bài ta có: \(A = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\).

\(\begin{array}{l} \Rightarrow A = 4{\left( {m - 1} \right)^2} - 2\left( {2m - 4} \right) = 4{m^2} - 8m + 4 - 4m + 8\\\,\,\,\,\,\,\, = 4{m^2} - 12m + 12 = 4{m^2} - 2.2m.3 + {3^2} + 3\\\,\,\,\,\,\,\, = {\left( {2m - 3} \right)^2} + 3.\end{array}\)

Ta có:\({\left( {2m - 3} \right)^2} \ge 0\,\,\,\forall m \Rightarrow A = {\left( {2m - 3} \right)^2} + 3 \ge 3\,\,\,\forall m\)

\( \Rightarrow A \ge 3\).

Dấu “=” xảy ra khi \(2m - 3 = 0 \Leftrightarrow m = \frac{3}{2}\).

Vậy \({A_{\min }} = 3\) khi \(m = \frac{3}{2}\).

Chọn C.

Ý kiến của bạn