[LỜI GIẢI] Cho x,y,z > 0 và xy + yz + xz = 3xyz. Tính giá trị nhỏ nhất của : A = x^2z( z^2 + - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho x,y,z > 0 và xy + yz + xz = 3xyz. Tính giá trị nhỏ nhất của :

A = x^2z( z^2 +

Cho x,y,z > 0 và xy + yz + xz = 3xyz. Tính giá trị nhỏ nhất của :
<p align="center">A = x^2z( z^2 +

Câu hỏi

Nhận biết

Cho \(x,y,z > 0\) và \(xy + yz + xz = 3xyz.\) Tính giá trị nhỏ nhất của :

\(A = \frac{{{x^2}}}{{z\left( {{z^2} + {x^2}} \right)}} + \frac{{{y^2}}}{{x\left( {{x^2} + {y^2}} \right)}} + \frac{{{z^2}}}{{y\left( {{y^2} + {z^2}} \right)}}\)


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(xy + yz + zx = 3xyz\)

Chia cả hai vế cho \(xyz \ne 0\) ta được: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3\).

Đặt \(a = \frac{1}{x},b = \frac{1}{y},c = \frac{1}{z}\left( {a,b,c > 0} \right)\) thì \(a + b + c = 3\).

Khi đó \(\frac{{{x^2}}}{{z\left( {{z^2} + {x^2}} \right)}} = \frac{{{{\left( {\frac{1}{a}} \right)}^2}}}{{\frac{1}{c}.\left( {\frac{1}{{{c^2}}} + \frac{1}{{{a^2}}}} \right)}} = \frac{{{c^3}}}{{{a^2} + {c^2}}}\) \( = \frac{{{c^3} + c{a^2} - c{a^2}}}{{{c^2} + {a^2}}} = c - \frac{{c{a^2}}}{{{c^2} + {a^2}}}\)

\(\frac{{{y^2}}}{{x\left( {{x^2} + {y^2}} \right)}} = \frac{{{{\left( {\frac{1}{b}} \right)}^2}}}{{\frac{1}{a}\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}}} \right)}} = \frac{{{a^3}}}{{{a^2} + {b^2}}}\) \( = \frac{{{a^3} + a{b^2} - a{b^2}}}{{{a^2} + {b^2}}} = a - \frac{{a{b^2}}}{{{a^2} + {b^2}}}\)

\(\frac{{{z^2}}}{{y\left( {{y^2} + {z^2}} \right)}} = \frac{{{{\left( {\frac{1}{c}} \right)}^2}}}{{\frac{1}{b}\left( {\frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right)}} = \frac{{{b^3}}}{{{b^2} + {c^2}}}\)\( = \frac{{{b^3} + b{c^2} - b{c^2}}}{{{b^2} + {c^2}}} = b - \frac{{b{c^2}}}{{{b^2} + {c^2}}}\)

\( \Rightarrow A = c - \frac{{c{a^2}}}{{{c^2} + {a^2}}} + a - \frac{{a{b^2}}}{{{a^2} + {b^2}}} + b - \frac{{b{c^2}}}{{{b^2} + {c^2}}}\)

\( = \left( {a + b + c} \right) - \left( {\frac{{c{a^2}}}{{{c^2} + {a^2}}} + \frac{{a{b^2}}}{{{a^2} + {b^2}}} + \frac{{b{c^2}}}{{{b^2} + {c^2}}}} \right)\)

\( = 3 - \left( {\frac{{c{a^2}}}{{{c^2} + {a^2}}} + \frac{{a{b^2}}}{{{a^2} + {b^2}}} + \frac{{b{c^2}}}{{{b^2} + {c^2}}}} \right)\)

Mà \({c^2} + {a^2} \ge 2ca \Rightarrow \frac{{c{a^2}}}{{{c^2} + {a^2}}} \le \frac{{c{a^2}}}{{2ca}} = \frac{a}{2}\)

Tương tự \(\frac{{a{b^2}}}{{{a^2} + {b^2}}} \le \frac{b}{2}\) và \(\frac{{b{c^2}}}{{{b^2} + {c^2}}} \le \frac{c}{2}\)

\( \Rightarrow \frac{{c{a^2}}}{{{c^2} + {a^2}}} + \frac{{a{b^2}}}{{{a^2} + {b^2}}} + \frac{{b{c^2}}}{{{b^2} + {c^2}}} \le \frac{a}{2} + \frac{b}{2} + \frac{c}{2} = \frac{3}{2}\)

\( \Rightarrow 3 - \left( {\frac{{c{a^2}}}{{{c^2} + {a^2}}} + \frac{{a{b^2}}}{{{a^2} + {b^2}}} + \frac{{b{c^2}}}{{{b^2} + {c^2}}}} \right) \ge 3 - \frac{3}{2} = \frac{3}{2}\).

Vậy \(A \ge \frac{3}{2}\) nên \(\min A = \frac{3}{2}\).

Dấu “=” xảy ra khi \(a = b = c = 1\).

Chọn C.

Ý kiến của bạn