Cho tam giác ABC có \( \cot A = 2( \cot B + \cot C) \). Khi đó, ta có hệ thức nào sau đây?
Giải chi tiết:
\(\eqalign{ & \left\{ \matrix{ {a^2} = {b^2} + {c^2} - 2bc.cosA \hfill \cr {b^2} = {a^2} + {c^2} - 2ac.cosB \hfill \cr {c^2} = {a^2} + {b^2} - 2ab.cosC \hfill \cr} \right. \Rightarrow \left\{ \matrix{ \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} \hfill \cr \cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} \hfill \cr \cos C = {{{a^2} + {b^2} - {c^2}} \over {2ab}} \hfill \cr} \right. \cr & {a \over {\sin \,A}} = {b \over {\sin \,B}} = {c \over {\sin \,C}} = 2R \Rightarrow \left\{ \matrix{ \sin A = {a \over {2R}} \hfill \cr \sin B = {b \over {2R}} \hfill \cr \sin C = {c \over {2R}} \hfill \cr} \right. \cr & \cot A = 2\left( {\cot B + \cot C} \right) \Leftrightarrow {{\cos A} \over {\sin A}} = 2\left( {{{\cos B} \over {\sin B}} + {{\cos C} \over {\sin C}}} \right) \cr & \Leftrightarrow {{{{{b^2} + {c^2} - {a^2}} \over {2bc}}} \over {{a \over {2R}}}} = 2\left( {{{{{{a^2} + {c^2} - {b^2}} \over {2ac}}} \over {{b \over {2R}}}} + {{{{{b^2} + {a^2} - {c^2}} \over {2ab}}} \over {{c \over {2R}}}}} \right) \cr & \Leftrightarrow {{R\left( {{b^2} + {c^2} - {a^2}} \right)} \over {abc}} = 2\left( {{{R\left( {{a^2} + {c^2} - {b^2}} \right)} \over {abc}} + {{R\left( {{b^2} + {a^2} - {c^2}} \right)} \over {abc}}} \right) \cr & \Leftrightarrow {{R\left( {{b^2} + {c^2} - {a^2}} \right)} \over {abc}} = {{4R{a^2}} \over {abc}} \cr & \Leftrightarrow {b^2} + {c^2} - {a^2} = 4{a^2} \Leftrightarrow {b^2} + {c^2} = 5{a^2} \cr} \).
Chọn A.