Cho tam giác ABC có \(AC = 7cm,\,\,BC = 10cm\) và \(\widehat {BAC} = {60^0}\). Tính \(\sin \widehat {ABC}\) và tính độ dài cạnh AB (yêu cầu tính ra kết quả chính xác, không tính xấp xỉ).
Giải chi tiết:
Áp dụng định lí sin ta có: \(\frac{{AC}}{{\sin \widehat {ABC}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow \frac{7}{{\sin \widehat {ABC}}} = \frac{{10}}{{\sin {{60}^0}}} \Leftrightarrow \sin \widehat {ABC} = \frac{{7.\sin {{60}^0}}}{{10}} = \frac{{7\sqrt 3 }}{{20}}\)
Áp dụng định lí cosin ta có:
\(\begin{array}{l}\,\,\,\,\,\,\cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \Leftrightarrow \cos {60^0} = \frac{{A{B^2} + {7^2} - {{10}^2}}}{{2.AB.7}}\\ \Leftrightarrow 7AB = A{B^2} - 51 \Leftrightarrow A{B^2} - 7AB - 51 = 0\\ \Leftrightarrow \left[ \begin{array}{l}AB = \frac{{7 + \sqrt {253} }}{2}\\AB = \frac{{7 - \sqrt {253} }}{2} < 0\,\,\left( {ktm} \right)\end{array} \right. \Rightarrow AB = \frac{{7 + \sqrt {253} }}{2}\end{array}\)